Skip to main content

Sustainable Agriculture and Climate Change

  • Chapter
  • First Online:
Innovations in Sustainable Agriculture
  • 1266 Accesses

Abstract

Climate change, a change in the statistical distribution of weather patterns for an extended period, is caused by natural factors such as variations in solar radiation, and human activities. Climate change is expected to affect the frequency, distribution, intensity, and location of extreme events, and thus will affect the sustainability of agriculture. In this regard, management and adaptation strategies to mitigate the climate change effects are direly needed to ensure stable yields in the world and food security. Sustainable agriculture provides a potential solution to enable agricultural systems to feed a growing population while successfully operating within the changing environmental conditions. International cooperation in research and actions is very important and may yield great benefits to cope with the climate change challenges. This chapter introduce the issues of climate change, describe its characteristics, discusses its impacts on sustainable agriculture and highlight the potential risks involved. Strategies for sustainable agriculture under climate change have also been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Amin AQ, Ahmed F (2016) Food security challenge of climate change: an analysis for policy selection. Futures 83:50–63

    Article  Google Scholar 

  • Bai HZ, Tao FL (2017) Sustainable intensification options to improve yield potential and ecoefficiency for rice-wheat rotation system in China. Field Crop Res 211:89–105

    Article  Google Scholar 

  • Balmford A, Green R, Phalan B (2012) What conservationists need to know about farming? Proc R Soc B Biol Sci 279(1739):2714–2724

    Article  Google Scholar 

  • Basu S, Rabara RC, Negi S (2018) AMF: the future prospect for sustainable agriculture [J]. Physiol Mol Plant Pathol 102:36–45

    Article  Google Scholar 

  • Bosomworth K (2015) Climate change adaptation in public policy: frames, fire management, and frame reflection. Environ Plan C Gov Policy 33(6):1450–1466

    Article  Google Scholar 

  • Brown PR, Bridle KL, Crimp SJ (2016) Assessing the capacity of Australian broadacre mixed farmers to adapt to climate change: identifying constraints and opportunities. Agric Syst 146:129–141

    Article  Google Scholar 

  • Burch S, Shaw A, Dale A et al (2014) Triggering transformative change: a development path approach to climate change response in communities. Clim Pol 14(4):467–487

    Article  Google Scholar 

  • Carberry PS, Liang WL, Twomlow T et al (2013) Scope for improved eco-efficiency varies among diverse cropping systems. Proc Natl Acad Sci U S A 110:8381–8386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carolan M (2006) Do you see what I see? Examining the epistemic barriers to sustainable agriculture. Academic search complete

    Google Scholar 

  • Castellano RLS, Moroney J (2018) Farming adaptations in the face of climate change. Renew Agric Food Syst 33(3):206–211

    Article  Google Scholar 

  • CGIAR: 2018 Global Food Policy Report (2018)

    Google Scholar 

  • Chakraborty S, Newton AC (2011) Climate change, plant diseases and food security: an overview. Plant Pathol 60:2–14

    Article  Google Scholar 

  • DaMatta FM, Grandis A, Arenque BC et al (2010) Impacts of climate changes on crop physiology and food quality [J]. Food Res Int 43(7):1814–1823

    Article  Google Scholar 

  • Dong ZQ, Pan ZH, Wang S et al (2016) Effective crop structure adjustment under climate change[J]. Ecol Indic 69:571–577

    Article  Google Scholar 

  • Editorial board (2015) The 3rd China’s national assessment of report on climate change. Science Press, Beijing

    Google Scholar 

  • FAO (2008) World agriculture towards 2015/2030. Food and Agriculture Organization

    Google Scholar 

  • FAO (2016) Monitoring food security and nutrition in support of the 2030 agenda for sustainable development: taking stock and looking ahead

    Google Scholar 

  • Gohar AA, Cashman A (2016) A methodology to assess the impact of climate variability and change on water resources, food security and economic welfare. Agric Syst 147:51–64

    Article  Google Scholar 

  • Gold M (2009) What is sustainable agriculture? United States Department of Agriculture, Alternative Farming Systems Information Center

    Google Scholar 

  • Hazard L, Steyaert P, Martin G et al (2018) Mutual learning between researchers and farmers during implementation of scientific principles for sustainable development: the case of biodiversity-based agriculture [J]. Sustain Sci 13(2):517–530

    Article  Google Scholar 

  • Hou LL, Huang JK, Wang JX (2015) Farmers’ perceptions of climate change in China: the influence of social networks and farm assets [J]. Clim Res 63(3):191–201

    Article  Google Scholar 

  • Hovenden M, Newton P (2018) Plant responses to CO2 are a question of time. Science 360(6386):263–264

    Article  CAS  PubMed  Google Scholar 

  • Huo ZG, Li MS, Wang L et al (2012) Impacts of climate warming on crop diseases and pests in China. China Agric Sci 45(10):1926–1934

    Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press

    Google Scholar 

  • IPCC (2014a) Climate change 2014 synthesis report summary for policymakers. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • IPCC (2014b) Climate change 2014: mitigation of climate change. Contribution of Working Group III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Jing LQ, Wang J, Shen SB et al (2016) The impact of elevated CO2 and temperature on grain quality of rice grown under open-air field conditions. J Sci Food Agric 96(11):3658–3667

    Article  CAS  PubMed  Google Scholar 

  • Jouzi Z, Azadi H, Taheri F et al (2017) Organic farming and small-scale farmers: main opportunities and challenges [J]. Ecol Econ 132:144–154

    Article  Google Scholar 

  • Kerr RB, Nyantakyi-Frimpong H, Dakishoni L et al (2018) Knowledge politics in participatory climate change adaptation research on agroecology in Malawi [J]. Renew Agric Food Syst 33(3):238–251

    Article  Google Scholar 

  • Kurukulasuriya P, Mendelsohn R (2017) Impact and adaptation of South-East Asian farmers to climate change: conclusions and policy recommendations. Clim Chang Econ 8(3):1–6

    Google Scholar 

  • Lal R (2018) Sustainable intensification of China’s agroecosystems by conservation agriculture. Int Soil Water Conserv Res 6(1):1–12

    Article  Google Scholar 

  • Lin ED, Xie LY (2014) Revelation of agro meteorology learning from climate change 2014∶ impact, adaptation, and vulnerability. Chin J Agro Meteorol 35(4):359–364

    Google Scholar 

  • Lin ED, Guo LP, Ju H (2018) Challenges to increasing the soil carbon pool of agro-ecosystems in China. J Integr Agric 17(4):723–725

    Article  Google Scholar 

  • Liu YJ, Tao FL (2013) Probabilistic change of wheat productivity and water use in China for global mean temperature changes of 1°C, 2°C, and 3°C. J Appl Meteorol Climatol 52:114–129

    Article  Google Scholar 

  • Luo XS, Muleta D, Hu ZH et al (2017) Inclusive development and agricultural adaptation to climate change [J]. Curr Opin Environ Sustain 24:78–83

    Article  Google Scholar 

  • Manea A, Leishman MR, Downey PO (2011) Exotic C4 grasses have increased tolerance to glyphosate under elevated carbon dioxide. Weed Sci 59:28–36

    Article  CAS  Google Scholar 

  • Mann W, Leslie L et al (2009) Food security and agricultural mitigation in developing countries: options for capturing synergies. FAO, Rome

    Google Scholar 

  • Martin-Guay MO, Paquette A, Dupras J et al (2018) The new Green Revolution: sustainable intensification of agriculture by intercropping [J]. Sci Total Environ 615:767–772

    Article  CAS  PubMed  Google Scholar 

  • Mohawesh Y, Taimeh A, Ziadat F (2015) Effects of land use changes and soil conservation intervention on soil properties as indicators for land degradation under a Mediterranean climate. Solid Earth 6(3):857–868

    Article  Google Scholar 

  • Mueller ND, Gerber JS, Johnston M et al (2012) Closing yield gaps through nutrient and water management. Nature 490(7419):254–257

    Article  CAS  PubMed  Google Scholar 

  • Niles MT, Lubell M, Brown M (2015) How limiting factors drive agricultural adaptation to climate change. Agric Syst 200:178–185

    Google Scholar 

  • Niles MT, Ahuja R, Barker T et al (2018) Climate change mitigation beyond agriculture: a review of food system opportunities and implications [J]. Renew Agric Food Syst 33(3):297–308

    Article  Google Scholar 

  • Nordhaus W (2007) Critical assumptions in the stern review on climate change. Science 317(5845):1682–1682

    Article  CAS  Google Scholar 

  • Phalan B, Onial M, Balmford A (2011) Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333(6047):1289–1291

    Article  CAS  PubMed  Google Scholar 

  • Piao SL, Ciais P, Huang Y et al (2010) The impacts of climate change on water resources and agriculture in China. Nature 467(7311):43–51

    Article  CAS  PubMed  Google Scholar 

  • Pilato G, Sallu SM, Gaworek-Michalczenia M (2018) Assessing the integration of climate change and development strategies at local levels: insights from Muheza District, Tanzania. Sustainability 10:1–11

    Article  Google Scholar 

  • Pilli-Sihvola K, Vaatainen-Chimpuku S (2016) Defining climate change adaptation and disaster risk reduction policy integration: evidence and recommendations from Zambia. Int J Disaster Risk Reduct 19:461–473

    Article  Google Scholar 

  • Pittelkow CM, Liang XQ, Linquist BA et al (2015) Productivity limits and potentials of the principles of conservation agriculture [J]. Nature 517(7534):365–482

    Article  CAS  PubMed  Google Scholar 

  • Porter JR, Xie L, Challinor AJ et al (2014) Food security and food production systems. In: Field CB, Barros VR et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, pp 485–533

    Google Scholar 

  • Pradhan A, Chan C, Roul PK et al (2018) Potential of conservation agriculture (CA) for climate change adaptation and food security under rainfed uplands of India: a transdisciplinary approach [J]. Agric Syst 163:27–35

    Article  Google Scholar 

  • Reich PB, Hobbie SE, Lee TD et al (2018) Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a 20-year field experiment. Science 360(6386):317–320

    Article  CAS  PubMed  Google Scholar 

  • Reyes JJ, Wiener JD, Doan-Crider D et al (2018) Building collaborative capacity: supporting tribal agriculture and natural resources in a changing climate. Renew Agric Food Syst 33(3):222–224

    Article  Google Scholar 

  • Richard SJ (2017) The structure of the climate debate. Energy Policy 104:431–438

    Article  Google Scholar 

  • Rockstrom J, Williams J, Daily G et al (2016) Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46(1):4–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Saj S, Torquebiau E, Hainzelin E et al (2017) The way forward: an agroecological perspective for Climate-Smart Agriculture [J]. Agric Ecosyst Environ 250:20–24

    Article  Google Scholar 

  • Sayer J, Sunderland T, Ghazoul J et al (2013) Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc Natl Acad Sci U S A 110:8349–8356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sayera J, Cassman KG (2013) Agricultural innovation to protect the environment. Proc Natl Acad Sci U S A 110(21):8345–8348

    Article  Google Scholar 

  • Schaafsma M, Utila H, Hirons MA (2018) Understanding trade-offs in upscaling and integrating climate- smart agriculture and sustainable river basin management in Malawi [J]. Environ Sci Policy 80:117–124

    Article  Google Scholar 

  • Tao FL, Zhang Z (2013) Climate change, high-temperature stress, rice productivity and water use in Eastern China: a new super ensemble-based probabilistic projection. J Appl Meteorol Climatol 52(3):531–551

    Article  Google Scholar 

  • Tao FL, Zhang Z, Zhang S et al (2012) Response of crop yields to climate trends since 1980 in China. Clim Res 54(3):233–247

    Article  Google Scholar 

  • Tao FL, Zhang Z, Zhang S et al (2016) Variability in crop yields associated with climate anomalies in China over the past three decades. Reg Environ Chang 16(6):1715–1723

    Article  Google Scholar 

  • Valipour M, Ahmadi MZ, Raeini-Sarjaz M et al (2015) Agricultural water management in the world during past half century [J]. Arch Agron Soil Sci 61(5):657–678

    Article  Google Scholar 

  • Vinke-de Kruijf J, Pahl-Wostl C (2016) A multi-level perspective on learning about climate change adaptation through international cooperation. Environ Sci Policy 66:242–249

    Article  Google Scholar 

  • Wang YJ, Huang JK, Wang JX (2014) Household and community assets and farmers’ adaptation to extreme weather event: the case of drought in China. J Integr Agric 13(4):687–697

    Article  Google Scholar 

  • Wijaya A, Glasbergen P, Leroy P et al (2018) Governance challenges of cocoa partnership projects in Indonesia: seeking synergy in multi-stakeholder arrangements for sustainable agriculture [J]. Environ Dev Sustain 20(1):129–153

    Article  Google Scholar 

  • WMO (2017) Global atmosphere watch

    Google Scholar 

  • WMO (2018) Statement on the state of the global climate in 2017

    Google Scholar 

  • Wossen T, Berger T, Haile MG et al (2018) Impacts of climate variability and food price volatility on household income and food security of farm households in East and West Africa[J]. Agric Syst 163:7–15

    Article  Google Scholar 

  • Xia J, Mo XG, Wang JX et al (2016) Impacts of climate change and adaptation in agricultural water management in North China [J]. Clim Change Agric Water Manag Dev Countries 8:63–77

    Google Scholar 

  • Xiao D, Tao F, Liu Y et al (2013) Observed changes in winter wheat phenology in the North China Plain for 1981–2009. Int J Biometeorol 57(2):275–285

    Article  PubMed  Google Scholar 

  • Xie L, Feng Y (2009) Climatic resources utilization to rice production in North China. China Agricultural Science and Technology Press, Beijing

    Google Scholar 

  • Xie LY, Li Y, Lin M (2011) Response and adaptation to climate change of agriculture and environment in Northeast China [J]. Chin J Eco-Agric 19(1):197–201

    Article  Google Scholar 

  • Xie LY, Li Y, Qian FK et al (2014) Responses of food production systems to climate change: sensitivity and vulnerability. Chin J Popul Resour Environ 12(3):227–232

    Article  Google Scholar 

  • Xie LY, Lin ED, Zhao HL et al (2016) Changes in the activities of starch metabolism enzymes in rice grains in response to elevated CO2 concentration. Int J Biometeorol 60(5):727–736

    Article  PubMed  Google Scholar 

  • Yang LX, Wang YL, Dong GC et al (2007) The impact of free-air CO2 enrichment (FACE) and nitrogen supply on grain quality of rice. Field Crop Res 102(2):128–140

    Article  Google Scholar 

  • Yang XG, Liu ZJ, Chen F (2010) The possible effects of global warming on cropping systems in China I. the possible effects of climate warming on northern limits of cropping systems and crop yields in China. China Agric Sci 43(2):329–336

    Google Scholar 

  • Ye LM, Xiong W, Li ZG et al (2013) Climate change impact on China food security in 2050. Agron Sustain Dev 33(2):363–374

    Article  Google Scholar 

  • Zeng Q, Liu BA, Gilna B et al (2011) Elevated CO2 effects on nutrient competition between a C-3 crop (Oryza sativa L.) and a C-4 weed (Echinochloa crusgalli L.). Nutr Cycl Agroecosyst 89(1):93–104

    Article  CAS  Google Scholar 

  • Zhang TY, Huang Y (2013) Estimating the impacts of warming trends on wheat and maize in China from 1980 to 2008 based on county level data. Int J Climatol 33(3):699–708

    Article  Google Scholar 

  • Zhang TY, Huang Y, Yang XG (2013) Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice. Glob Chang Biol 19(2):563–570

    Article  PubMed  Google Scholar 

  • Zhang X, Davidson EA, Mauzerall DL et al (2015) Managing nitrogen for sustainable development [J]. Nature 528(7580):51–59

    Article  CAS  PubMed  Google Scholar 

  • Zhang MX, Zhang J, Liu MG et al (2017a) Simulation on the future change of soil organic carbon from phaeozems under different management practices in Northeast China. Sustainability 9(7):1129

    Article  CAS  Google Scholar 

  • Zhang YX, Chao QC, Zheng QH et al (2017b) The withdrawal of the U.S. from the Paris Agreement and its impact on global climate change governance. Adv Clim Chang Res 8(4):213–219

    Article  Google Scholar 

  • Zhang Z, Chen Y, Wang CZ et al (2017c) Future extreme temperature and its impact on rice yield in China [J]. Int J Climatol 37(14):4814–4827

    Article  Google Scholar 

  • Zhao C, Liu B, Piao SL et al (2017) Temperature increase reduces global yields of major crops in four independent estimates [J]. Proc Natl Acad Sci U S A 114(35):9326–9331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziska LH (2003) Evaluation of the growth response of six invasive species to past, present and future atmospheric carbon dioxide. J Exp Bot 54:395–404

    Article  CAS  PubMed  Google Scholar 

  • Ziska LH, Goins EW (2006) Elevated atmospheric carbon dioxide and weed populations in glyphosate treated soybean. Crop Sci 46:1354–1359

    Article  Google Scholar 

  • Ziska LH, Blumenthal DM, Runion GB et al (2011) Invasive species and climate change: an agronomic perspective [J]. Clim Chang 105(1–2):13–42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyong Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xie, L., Zhao, H. (2019). Sustainable Agriculture and Climate Change. In: Farooq, M., Pisante, M. (eds) Innovations in Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-23169-9_14

Download citation

Publish with us

Policies and ethics