Skip to main content

Design and Implementation of an Architecture for Hybrid Labs

  • Conference paper
  • First Online:
Book cover Cyber-physical Systems and Digital Twins (REV2019 2019)

Abstract

This work aims to describe the design and implementation of an architecture for hybrid labs focused in the integration of remote and hands-on laboratories. The research was conducted following four different steps and based on applied procedures. The first step describes a systematic and exploratory literature review, in which the results were used as the basis for this work following by applied procedures for the next two steps. For the evaluation of the architecture, was adopted a hypothetical-deductive methodology that brings an analysis of two different learning scenarios. The application was designed to support two different interaction formats - following a generic-based and project-based use. These formats were designed in order to interact on the collaborative learning environment application adopting the concept of mobile laboratories. The findings revealed that the application might be addressed in different approaches adopting different learning methodologies, being the solution developed able to be used in consonance with hands-on and remote activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jara, C.A., Candelas, F.A., Puente, S.T., Torres, F.: Hands-on experiences of undergraduate students in automatics and robotics using a virtual and remote laboratory. Comput. Educ. 57(4), 2451–2461 (2011). https://doi.org/10.1016/j.compedu.2011.07.003, http://www.sciencedirect.com/science/article/pii/S0360131511001515

    Google Scholar 

  2. Ackovska, N., Kirandziska, V.: The importance of hands-on experiences in robotics courses. In: IEEE EUROCON 2017—17th International Conference on Smart Technologies, pp. 56–61 (2017). https://doi.org/10.1109/EUROCON.2017.8011077

  3. Mujkanovic, A., Zutin, D.G., Schellander, M., Oberlercher, G., Vormaier, M.: Impact of students’ preferences on the design of online laboratories. In: 2015 IEEE Global Engineering Education Conference (EDUCON), pp. 823–826 (2015). https://doi.org/10.1109/EDUCON.2015.7096067

  4. Tawfik, M., Sancristobal, E., Martin, S., Gil, R., Diaz, G., Colmenar, A., Peire, J., Castro, M., Nilsson, K., Zackrisson, J., Hakansson, L., Gustavsson, I.: Virtual instrument systems in reality (visir) for remote wiring and measurement of electronic circuits on breadboard. IEEE Trans. Learn. Technol. 6(1), 60–72 (2013). https://doi.org/10.1109/TLT.2012.20

    Article  Google Scholar 

  5. Tawfik, M., Lowe, D., Salzmann, C., Gillet, D., Sancristobal, E., Castro, M.: Defining the critical factors in the architectural design of remote laboratories. IEEE Rev. Iberoamericana de Tecnologias del Aprendizaje 10(4), 269–279 (2015). https://doi.org/10.1109/RITA.2015.2486388

    Article  Google Scholar 

  6. Ramos, S., Pimentel, E.P., Marietto das Gracas, M.B., Botelho, W.T.: Hands-on and virtual laboratories to undergraduate chemistry education: toward a pedagogical integration. In: 2016 IEEE Frontiers in Education Conference (FIE), pp. 1–8 (2016). https://doi.org/10.1109/FIE.2016.7757580

  7. Saliah-Hassane, H., Simao, J.P.S., Lima, J.P.C., Alves, G.R.C., Silva, J.B., Alves, J.B.M.: Mobile laboratories as an alternative to conventional remote laboratories. In: 15th LACCEI International Multi-Conference for Engineering, Education, and Technology (2017)

    Google Scholar 

  8. Saliah-Hassane, H., Kourri, A., Teja, I.D.L.: Building a repository for online laboratory learning scenarios. In: Proceedings of 36th Annual Conference Frontiers in Education, pp. 19–22 (2006). https://doi.org/10.1109/FIE.2006.322603

  9. Balamuralithara, B., Woods, P.C.: Virtual laboratories in engineering education: the simulation lab and remote lab. Comput. Appl. Eng. Educ. 17(1), 108–118 (2009). https://doi.org/10.1002/cae.20186

    Google Scholar 

  10. Zutin, D.G., Auer, M.E., Maier, C., Niederstätter, M.: Lab2go—a repository to locate educational online laboratories. In: IEEE EDUCON 2010 Conference, pp. 1741–1746 (2010). https://doi.org/10.1109/EDUCON.2010.5492412

  11. Orduña, P., Rodriguez-Gil, L., Garcia-Zubia, J., Angulo, I., Hernandez, U., Azcuenaga, E.: Labsland.: a sharing economy platform to promote educational remote laboratories maintainability, sustainability and adoption. In: 2016 IEEE Frontiers in Education Conference (FIE), pp. 1–6 (2016). https://doi.org/10.1109/FIE.2016.7757579

  12. Gustavsson, I.: Remote laboratory experiments in electrical engineering education. In: Proceedings of the Fourth IEEE International Caracas Conference on Devices, Circuits and Systems (Cat. No.02TH8611), pp. I025–1–I025–5 (2002). https://doi.org/10.1109/ICCDCS.2002.1004082

  13. Mosterman, P.J., Dorlandt, M.A., Campbell, J.O., Burow, C., Bouw, R., Brodersen, A.J., Bourne, J.R.: Virtual engineering laboratories: design and experiments. J. Eng. Educ. 83(3), 279–285 (1994). https://doi.org/10.1002/j.2168-9830.1994.tb01116.x

    Google Scholar 

  14. Gomes, L., Bogosyan, S.: Current trends in remote laboratories. IEEE Trans. Ind. Electron. 56(12), 4744–4756 (2009). https://doi.org/10.1109/TIE.2009.2033293

    Article  Google Scholar 

  15. Rodriguez-Gil, L., Garcia-Zubia, J., Orduna, P., de Ipina, D.L.: Towards new multiplatform hybrid online laboratory models. IEEE Trans. Learn. Technol. PP(99),  1–1 (2017). https://doi.org/10.1109/TLT.2016.2591953

    Google Scholar 

  16. Callaghan, M.J., McCusker, K., Losada, J.L., Harkin, J., Wilson, S.: Using game-based learning in virtual worlds to teach electronic and electrical engineering. IEEE Trans. Ind. Inf. 9(1), 575–584 (2013). https://doi.org/10.1109/TII.2012.2221133

    Article  Google Scholar 

  17. Chacón, J., Saenz, J., de la Torre, L., Sánchez, J.: Flipping the remote lab with low cost rapid prototyping technologies. In: Auer, M.E., Zutin, D.G. (eds.) Online Engineering & Internet of Things, pp. 250–257. Springer International Publishing, Cham (2018)

    Google Scholar 

  18. Scott, K., Benlamri, R.: Context-aware services for smart learning spaces. IEEE Trans. Learn. Technol. 3(3), 214–227 (2010). https://doi.org/10.1109/TLT.2010.12

    Article  Google Scholar 

  19. Curtis, D., Lawson, M.: Exploring collaborative online learning. J. Asynchronous Learn. Netw. 5(1) (2001) (cited By 225)

    Google Scholar 

  20. Macdonald, J.: Assessing online collaborative learning: process and product. Comput. Educ. 40(4), 377–391 (2003). https://doi.org/10.1016/S0360-1315(02)00168-9, http://www.sciencedirect.com/science/article/pii/S0360131502001689

    Google Scholar 

  21. Ryu, H., Parsons, D.: Risky business or sharing the load? Social flow in collaborative mobile learning. Comput. Educ. 58(2), 707–720 (2012). https://doi.org/10.1016/j.compedu.2011.09.019, http://www.sciencedirect.com/science/article/pii/S0360131511002363

    Google Scholar 

  22. García-Zubía, J., Angulo, I., Martínez-Pieper, G., de Ipiña, D.L., Hernández, U., Orduna, P., Dziabenko, O., Rodríguez-Gil, L., van Riesen, S.A.N., Anjewierden, A., Kamp, E.T., de Jong, T.: Archimedes remote lab for secondary schools. In: 2015 3rd Experiment International Conference (exp.at’15), pp. 60–64 (2015). https://doi.org/10.1109/EXPAT.2015.7463215

  23. De Oliveira, M.: Como Fazer Pesquisa Qualitativa. Marly DE Oliveira (2007)

    Google Scholar 

  24. Heradio, R., de la Torre, L., Galan, D., Cabrerizo, F.J., Herrera-Viedma, E., Dormido, S.: Virtual and remote labs in education: a bibliometric analysis. Comput. Educ. 98, 14–38 (2016). https://doi.org/10.1016/j.compedu.2016.03.010, http://www.sciencedirect.com/science/article/pii/S0360131516300677

    Google Scholar 

  25. Ma, J., Nickerson, J.V.: Hands-on, simulated, and remote laboratories: a comparative literature review. ACM Comput. Surv. 38(3) (2006). https://doi.org/10.1145/1132960.1132961

    Google Scholar 

  26. Bryman, A.: Social Research Methods. Oxford University Press, Oxford (2012)

    Google Scholar 

  27. Rodriguez-Gil, L., Orduña, P., Garcĩa-Zubia, J., de Ipiña, D.L.: Advanced integration of openlabs visir (virtual instrument systems in reality) with weblab-deusto. In: 2012 9th International Conference on Remote Engineering and Virtual Instrumentation (REV), pp. 1–7 (2012). https://doi.org/10.1109/REV.2012.6293150

  28. Orduña, P., Uribe, S.B., Isaza, N.H., Sancristobal, E., Emaldi, M., Martin, A.P., DeLong, K., Bailey, P., de Ipiña, D.L., Castro, M., Garcia-Zubia, J.: Generic integration of remote laboratories in learning and content management systems through federation protocols. In: 2013 IEEE Frontiers in Education Conference (FIE), pp. 1372–1378 (2013). https://doi.org/10.1109/FIE.2013.6685057

  29. Mendes, L.A., Li, L., Bailey, P.H., DeLong, K.R., del Alamo, J.A.: Experiment lab server architecture: a web services approach to supporting interactive labview-based remote experiments under mit’s ilab shared architecture. In: 2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV), pp. 293–305 (2016). https://doi.org/10.1109/REV.2016.7444486

  30. Harward, V.J., del Alamo, J.A., Lerman, S.R., Bailey, P.H., Carpenter, J., DeLong, K., Felknor, C., Hardison, J., Harrison, B., Jabbour, I., Long, P.D., Mao, T., Naamani, L., Northridge, J., Schulz, M., Talavera, D., Varadharajan, C., Wang, S., Yehia, K., Zbib, R., Zych, D.: The ilab shared architecture: a web services infrastructure to build communities of internet accessible laboratories. Proc. IEEE 96(6), 931–950 (2008). https://doi.org/10.1109/JPROC.2008.921607

    Article  Google Scholar 

  31. Hardison, J.L., DeLong, K., Bailey, P.H., Harward, V.J.: Deploying interactive remote labs using the ilab shared architecture. In: 2008 38th Annual Frontiers in Education Conference, pp. S2A–1–S2A–6 (2008). https://doi.org/10.1109/FIE.2008.4720536

  32. Mellos Carlos, L., Cardoso de Lima, J.P., Schardosim Simão, J.P., Bento da Silva, J., Sommer Bilessimo, S.: Estratégias de integração de tecnologia no ensino: Uma solução baseada em experimentação remota móvel. In: Libro de Actas Tical (2017)

    Google Scholar 

  33. de Lima, J.P.C.: Desenvolvimento De Servidores Para LaboratÓrios Remotos Baseado No Paradigma De Dispositivos Inteligentes. Universidade Federal de Santa Catarina, Trabalho de conclusão de curso (2016)

    Google Scholar 

  34. Salzmann, C., Govaerts, S., Halimi, W., Gillet, D.: The smart device specification for remote labs. In: Proceedings of 2015 12th International Conference on Remote Engineering and Virtual Instrumentation (REV), pp. 199–208 (2015). https://doi.org/10.1109/REV.2015.7087292

Download references

Acknowledgments

The authors would like to thank the Foundation for Research and Innovation Support of the State of Santa Catarina (FAPESC) and the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES) for the master’s scholarships, and Global Affairs Canada for the mobility fellowship granted through the Emerging Leaders in the Americas Program (ELAP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Mellos Carlos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mellos Carlos, L., Schardosim Simão, J.P., Saliah-Hassane, H., Silva, J.B.d., Mota Alves, J.B.d. (2020). Design and Implementation of an Architecture for Hybrid Labs. In: Auer, M., Ram B., K. (eds) Cyber-physical Systems and Digital Twins. REV2019 2019. Lecture Notes in Networks and Systems, vol 80. Springer, Cham. https://doi.org/10.1007/978-3-030-23162-0_13

Download citation

Publish with us

Policies and ethics