Skip to main content

Screening Technique for Heat Shock Protein 90 Inhibitors from Natural Products

  • Chapter
  • First Online:
Book cover Heat Shock Protein 90 in Human Diseases and Disorders

Part of the book series: Heat Shock Proteins ((HESP,volume 19))

Abstract

Heat shock protein 90 (Hsp90) has emerged as an important target in cancer therapy, in which case screening inhibitors targeted Hsp90 attracted special attention on anti-cancer research. Recent progress in the development of screening technique for Hsp90 inhibitors has taken place. Particular emphasis is focused on ligand fishing screening assay based on protein affinity such as fluorescent ligand fishing that serve as a screening platform show case. This context will focus on strategies to screen and validate potential Hsp90 inhibitors from natural products and the development of screening techniques that are currently applied for the discovery of bioactive compounds from complex mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFI-MS:

Automated flow injection ESI-MS

Aha1:

Activator of Hsp90 ATPase homologue 1

Cdc37:

Cell division cycle 37 homologue

CDD:

C-terminal dimerisation domain

CE:

Capillary electrophoresis

CEfrag:

Fragment screening technology based on capillary electrophoresis

CTD:

Carboxy-terminal domain

Cy3B-GM:

Cy3B-labeled geldanamycin

EGCG:

Epigallocatechin gallate

EI-MS:

Electrospray ionization mass spectrometry

FBDD:

Fragment-based drug discovery

FP:

Fluorescence polarization

GA:

Geldanamycin

Grp94, HSPC4:

glucose-regulated protein 94

Hop:

Hsc70/Hsp90-organizing protein

Hsf1:

Heat shock factor 1

Hsp90:

Heat shock protein 90

HSPC1:

Hsp90AA1

HSPC2:

Hsp90α

HSPC3:

Hsp90β

HTS:

High-throughput screening

MD:

Middle domain

MEEVD:

Met-Glu-Glu-Val-Asp

mP:

Millipolarization

NMR:

Nuclear magnetic resonance

NTD:

Amino-terminal domain

p23:

Prostaglandin E synthase 3

PTMs:

Post-translational modifications

QDs:

Quantum dots

QSAR:

Quantitative structure-activity relationship

ROCS:

Rapid overlay of chemical structures;

S. elongates:

Synechococcus elongates

SCLC:

Small-cell lung carcinoma

SPR:

Surface plasmon resonance

TPR:

Tetratricopeptide repeat

Trap-1, HSPC5:

Tumor necrosis factor receptor-associated protein 1

References

  • Aloy P, Russell RB (2002) Potential artefacts in protein-interaction networks. FEBS Lett 530:253–254

    Article  CAS  PubMed  Google Scholar 

  • Ashtari K, Khajeh K, Fasihi J, Ashtari P, Ramazani A, Vali H (2012) Silica-encapsulated magnetic nanoparticles: enzyme immobilization and cytotoxic study. Int J Biol Macromol 50:1063–1069

    Article  CAS  PubMed  Google Scholar 

  • Austin C, Pettit SN, Magnolo SK et al (2012) Fragment screening using capillary electrophoresis (CEfrag) for hit identification of heat shock protein 90 ATPase inhibitors. J Biomol Screen 17:868–876

    Article  PubMed  Google Scholar 

  • Banerji U, O’Donnell A, Scurr M, Pacey S, Stapleton S, Asad Y, Simmons L, Maloney A, Raynaud F et al (2005) Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J Clin Oncol 23:4152–4161

    Article  CAS  PubMed  Google Scholar 

  • Barnes-Seeman D, Park SB, Koehler AN, Schreiber SL (2003) Expanding the functional group compatibility of small-molecule microarrays: discovery of novel calmodulin ligands. Angew Chem Int Ed 42:2376–2379

    Article  CAS  Google Scholar 

  • Barril X, Brough P, Drysdale M et al (2005) Structure-based discovery of a new class of Hsp90 inhibitors. Bioorg Med Chem Lett 15:5187–5191

    Article  CAS  PubMed  Google Scholar 

  • Baykov AA, Evtushenko OA, Avaeva SM (1998) A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal Biochem 171:266–270

    Article  Google Scholar 

  • Beaudet L, Bédard J, Breton B, Mercuri RJ, Budarf ML (2001) Homogeneous assays for single-nucleotide polymorphism typing using AlphaScreen. Genome Res 11:600–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belenky A, Hughes D, Korneev A, Dunayevskiy Y (2004) Capillary electrophoretic approach to screen for enzyme inhibitors in natural extracts. J Chromatogr A 1053:247–251

    Article  CAS  PubMed  Google Scholar 

  • Biamonte MA, Van de Water R, Arndt JW, Scannevin RH, Perret D, Lee WC (2010) Heat shock protein 90: inhibitors in clinical trials. J Med Chem 53:3–17

    Article  CAS  PubMed  Google Scholar 

  • Brandt GE, Schmidt MD, Prisinzano TE, Blagg BS (2008) Gedunin, a novel hsp90 inhibitor: semisynthesis of derivatives and preliminary structure-activity relationships. J Med Chem 51:6495–6502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brasca MG, Casale E, Ferguson R, Polucci P, Zuccotto F (2015) Resorcinol derivatives as Hsp90 inhibitors. U.S. patent 8993556 B2, p, 2015-03-31

    Google Scholar 

  • Brough PA, Barril X, Borgognoni J et al (2009) Combining hit identification strategies: fragment-based and in silico approaches to orally active 2-aminothieno[2,3-d]pyrimidine inhibitors of the Hsp90 molecular chaperone. J Med Chem 52:4794–4809

    Article  CAS  PubMed  Google Scholar 

  • Brune M, Hunter JL, Corrie JE, Webb MR (1994) Direct, real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actomyosin subfragment 1 ATPase. Biochemistry 33:8262–8271

    Article  CAS  PubMed  Google Scholar 

  • Brune M, Hunter JL, Howell SA, Martin SR, Hazlett TL, Corrie JE, Webb MR (1998) Mechanism of inorganic phosphate interaction with phosphate binding protein from Escherichia coli. Biochemistry 37:10370–10380

    Article  CAS  PubMed  Google Scholar 

  • Buchner J (1999) Hsp90 & co. —a holding for folding. Trends Biochem Sci 24:136–141

    Article  CAS  PubMed  Google Scholar 

  • Burger M, Zimmermann TJ, Kondoh Y, Stege P, Watanabe N, Osada H, Waldmann H, Vetter IR (2012) Crystal structure of the predicted phospholipase LYPLAL1 reveals unexpected functional plasticity in spite of close relationship to acyl protein thioesterases. J Lipid Res 53:43–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caroli A, Ballante F, Wickersham RB, Corelli F, Ragno R (2014) Hsp90 inhibitors, part 2: combining ligand-based and structure-based approaches for virtual screening application. J Chem Inf Model 54:970–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Bradford WD, Seidel CW, Li R (2012) Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature 482:246–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WQ, Zheng RS, Baade PD, Zhang SW, Zeng HM, Bray F, Jemal A, Yu XQ, He J (2016) Cancer statistics in China, 2015. Ca Cancer J Clin 66:115–132

    Article  PubMed  Google Scholar 

  • Chini MG, Malafronte N, Vaccaro MC et al (2016) Identification of limonol derivatives as heat shock protein 90 (Hsp90) inhibitors through a multidisciplinary approach. Chemistry 22:13236–13250

    Article  CAS  PubMed  Google Scholar 

  • Chiosis G, Caldas Lopes E, Solit D (2006) Hsp90 inhibitors: a chronicle from geldanamycin to today’s agents. Curr Opin Investig Drugs 6:534–541

    Google Scholar 

  • Crevel G, Bates H, Huikeshoven H, Cotterill S (2001) The Drosophila Dpit47 protein is a nuclear Hsp90 co-chaperone that interacts with DNA polymerase alpha. J Cell Sci 114:2015–2025

    CAS  PubMed  Google Scholar 

  • Driggers EM, Hale SP, Lee J, Terrett NK (2008) The exploration of macrocycles for drug discovery – an underexploited structural class. Nat Rev Drug Discov 7:608–624

    Article  CAS  PubMed  Google Scholar 

  • Du Y, Moulick K, Rodina A, Aguirre J, Felts S, Dingledine R, Fu H, Chiosis G (2007) High-throughput screening fluorescence polarization assay for tumor-specific Hsp90. J Biomol Screen 12:915–924

    Article  CAS  PubMed  Google Scholar 

  • Ferrarini M, Heltai S, Zocchi MR, Rugarli C (1992) Unusual expression and localization of heat-shock proteins in human tumor cells. Int J Cancer 19:613–619

    Article  Google Scholar 

  • Fielding L (2003) NMR methods for the determination of protein-ligand dissociation constants. Curr Top Med Chem 3:39–53

    Article  CAS  PubMed  Google Scholar 

  • Garcia E, Hasenbank MS, Finlayson B, Yager P (2007) High-throughput screening of enzyme inhibition using an inhibitor gradient generated in a microchannel. Lab Chip 7:249–255

    Article  CAS  PubMed  Google Scholar 

  • Garg G, Khandelwal A, Blagg BS (2016) Anticancer inhibitors of Hsp90 function: beyond the usual suspects. Adv Cancer Res 129:51–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadden MK, Galam L, Gestwicki JE, Matts RL, Blagg BSJ (2007) Derrubone, an inhibitor of the Hsp90 protein folding machinery. J Nat Prod 70:2014–2018

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara K, Kondoh Y, Ueda A, amada K, Goto H, Watanabe T, Nakata T, Osada H, Aida Y (2010) Discovery of novel antiviral agents directed against the influenza a virus nucleoprotein using photo-cross-linked chemical arrays. Biochem Biophys Res Commun 394:721–727

    Article  CAS  PubMed  Google Scholar 

  • Hämäläinen MD, Zhukov A, Ivarsson M, Fex T, Gottfries J, Karlsson R, Björsne M (2008) Label-free primary screening and affinity ranking of fragment libraries using parallel analysis of protein panels. J Biomol Screen 13:202–209

    Article  CAS  PubMed  Google Scholar 

  • Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, Yagyu R, Nakamura Y (2004) SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 6:731–740

    Article  CAS  PubMed  Google Scholar 

  • Hamamoto R, Silva FP, Tsuge M, Nishidate T, Katagiri T, Nakamura Y, Furukawa Y (2006) Enhanced SMYD3 expression is essential for the growth of breast cancer cells. Cancer Sci 97:113–118

    Article  CAS  PubMed  Google Scholar 

  • Harder KW, Owen P, Wong LK, Aebersold R, Clark-Lewis I, Jirik FR (1994) Characterization and kinetic analysis of the intracellular domain of human protein tyrosine phosphatase beta (HPTP beta) using synthetic phosphopeptides. Biochem J 298:395–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heck AJ, Van Den Heuvel RH (2004) Investigation of intact protein complexes by mass spectrometry. Mass Spectrom Rev 23:368–389

    Article  CAS  PubMed  Google Scholar 

  • Hergenrother PJ, Depew KM, Schreiber SL (2000) Small-molecule microarrays: covalent attachment and screening of alcohol-containing small molecules on glass slides. J Am Chem Soc 122:7849–7850

    Article  CAS  Google Scholar 

  • Hessling M, Richter K, Buchner J (2009) Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nat Struct Mol Biol 16:287–293

    Article  CAS  PubMed  Google Scholar 

  • Hieronymus H, Lamb J, Ross KN, Peng XP, Clement C, Rodina A, Nieto M, Du J, Stegmaier K, Raj SM, Maloney KN, Clardy J, Hahn WC, Chiosis G, Golub TR (2006) Gene expression signature-based chemical genomic prediction identifies a novel class of Hsp90 pathway modulators. Cancer Cell 10:321–330

    Article  CAS  PubMed  Google Scholar 

  • Hofstadler SA, Sannes-Lowery KA (2006) Applications of ESI-MS in drug discovery: interrogation of noncovalent complexes. Nat Rev Drug Discov 5:585–595

    Article  CAS  PubMed  Google Scholar 

  • Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493

    Article  CAS  PubMed  Google Scholar 

  • Hong DS, Banerji U, Tavana B (2013) Targeting the molecular chaperone heat shock protein 90 (Hsp90): lessons learned and future directions. Cancer Treat Rev 39:375–387

    Article  CAS  PubMed  Google Scholar 

  • Howes R, Barril X, Dymock BW, Grant K, Northfield CJ, Robertson AG, Surgenor A, Wayne J, Wright L, James K, Matthews T, Cheung KM, McDonald E, Workman P, Drysdale MJ (2006) A fluorescence polarization assay for inhibitors of Hsp90. Anal Biochem 350:202–213

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Fu AC, Miao ZY, Zhang XJ, Wang TL, Kang A, Shan JJ, Zhu D, Li W (2018a) Fluorescent ligand fishing combination with in-situ imaging and characterizing to screen Hsp 90 inhibitors from Curcuma longa L. based on InP/ZnS quantum dots embedded mesoporous nanoparticles. Talanta 178:258–267

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Miao ZY, Zhang XJ, Yang XT, Tang YY, Yu S, Shan CX, Wen HM, Zhu D (2018b) Preparation of microkernel-based mesoporous (SiO2−CdTe−SiO2)@SiO2 fluorescent nanoparticles for imaging screening and enrichment of heat shock protein 90 inhibitors from Tripterygium Wilfordii. Anal Chem 90:5678–5686

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Shan CX, Wang J, Zhu JM, Gu CQ, Ni WT, Zhu D, Zhang AH (2015) Fabrication of functionalized SiO2/TiO2 nanocomposites via amidation for the fast and selective enrichment of phosphopeptides. New J Chem 39:6540–6547

    Article  CAS  Google Scholar 

  • Huang R, Ayine-Tora DM, Muhammad Rosdi MN, Li Y, Reynisson J, Leung IKH (2016) Virtual screening and biophysical studies lead to HSP90 inhibitors. Bioorg Med Chem Lett 27:277–281

    Article  CAS  PubMed  Google Scholar 

  • Jahnke W, Widmer H (2004) Protein NMR in biomedical research. Cell Mol Life Sci 61:580–599

    Article  CAS  PubMed  Google Scholar 

  • Jhaveri K, Taldone T, Modi S, Chiosis G (2012) Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim Biophys Acta 1823:742–755

    Article  CAS  PubMed  Google Scholar 

  • Jia J, Xu X, Liu F et al (2013) Identification, design and bio-evaluation of novel Hsp90 inhibitors by ligand-based virtual screening. PloS One 8:e59315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperon 14:105–111

    Article  CAS  Google Scholar 

  • Kanoh N, Asami A, Kawatani M, Honda K, Kumashiro S, Takayama H, Simizu S, Amemiya T, Kondoh Y, Hatakeyama S, Tsuganezawa K, Utata R, Tanaka A, Yokoyama S, Tashiro H, Osada H (2006) Photo-cross-linked small molecule microarrays as chemical genomic tools for dissecting protein-ligand interactions. Chem Asian J 1:789–797

    Article  CAS  PubMed  Google Scholar 

  • Kanoh N, Kumashiro S, Simizu S, Kondoh Y, Hatakeyama S, Tashiro H, Osada H (2003) Immobilization of natural products on glass slides by using a photoaffinity reaction and the detection of protein-small-molecule interactions. Angew Chem Int Ed 42:5584–5587

    Article  CAS  Google Scholar 

  • Kaur G, Belotti D, Burger AM, Fisher-Nielson K, Borsotti P, Riccardi E, Thillainathan J, Hollingshead M, Sausville EA, Giavazzi R (2004) Antiangiogenic properties of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin: an orally bioavailable heat shock protein 90 modulator. Clin Cancer Res 10:4813–4821

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Felts S, Llauger L, He H, Huezo H, Rosen N, Chiosis G (2004) Development of a fluorescence polarization assay for the molecular chaperone Hsp90. J Biomol Screen 9:375–381

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Alarcon SV, Lee S (2009) Update on Hsp90 inhibitors in clinical trial. Curr Top Med Chem 9:1479–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koehler AN, Shamji AF, Schreiber SL (2003) Discovery of an inhibitor of a transcription factor using small molecule microarrays and diversity-oriented synthesis. J Am Chem Soc 125:8420–8421

    Article  CAS  PubMed  Google Scholar 

  • Kondoh Y, Osada H (2013) High-throughput screening identifies small molecule inhibitors of molecular chaperones. Curr Pharm Des 19:473–492

    Google Scholar 

  • Krukenberg KA, Street TO, Lavery LA, Agard DA (2011) Conformational dynamics of the molecular chaperone Hsp90. Q Rev Biophys 44:229–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuruvilla FG, Shamji AF, Sternson SM, Hergenrother PJ, Schreiber SL (2002) Dissecting glucose signalling with diversity-orienter synthesis and small-molecule microarrays. Nature 416:653–657

    Article  CAS  PubMed  Google Scholar 

  • Lakowitz JR, Joseph R (eds) (1999) Principles of fluorescence spectroscopy, 2nd edn. Plenum, New York, pp 291–319

    Google Scholar 

  • Lee HY, Park SB (2011) Surface modification for small-molecule microarrays and its application to the discovery of a tyrosinase inhibitor. Mol Biosyst 7:304–310

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang T, Jiang Y, Lee HF, Schwartz SJ, Sun D (2009) Epigallocatechin-3-gallate inhibits Hsp90 function by impairing Hsp90 association with cochaperones in pancreatic cancer cell line Mia Paca-2. Mol Pharm 6:1152–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu LL, Shi SY, Chen XQ, Peng MJ (2013) Analysis of tyrosinase binders from Glycyrrhiza uralensis root: evaluation and comparison of tyrosinase immobilized magnetic fishing-HPLC and reverse ultrafiltration-HPLC. J Chromatogr B 932:19–25

    Article  CAS  Google Scholar 

  • Liu L, Bagal D, Kitova EN, Schnier PD, Klassen JS (2009) Hydrophobic proteinligand interactions preserved in the gas phase. J Am Chem Soc 131:15980–15981

    Article  CAS  PubMed  Google Scholar 

  • Lo MC, Aulabaugh A, Jin G, Cowling R, Bard J, Malamas M, Ellestad G (2004) Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal Biochem 332:153–159

    Article  CAS  PubMed  Google Scholar 

  • Lourenço VK, Jiang Z, Zhang X, Vieira LC, Corrêa AG, Cardoso CL, Cass QB, Moaddel R (2013) Acetylcholinesterase immobilized capillary reactors coupled to protein coated magnetic beads: a new tool for plant extract ligand screening. Talanta 116:647–652

    Article  CAS  Google Scholar 

  • Lundin A (2000) Use of firefly luciferace in ATP-related assays of biomass, enzymes and metabolites. Methods Enzymol 305:346–370

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Horiuchi KY (2006) Chemical microarray: a new tool for drug screening and discovery. Drug Discov Today 11:661–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacBeath G, Koehler AN, Schreiber SL (1999) Printing small molecules as microarrays and detecting protein-ligand interactions en masse. J Am Chem Soc 121:7967–7968

    Article  CAS  Google Scholar 

  • Maehama T, Taylor GS, Slama JT, Dixon JE (2000) A sensitive assay for phosphoinositide phosphatases. Anal Biochem 279:248–250

    Article  CAS  PubMed  Google Scholar 

  • Makhnevych T, Houry WA (2012) The role of Hsp90 in protein complex assembly. Biochim Biophys Acta Mol Cell Res 1823:674–682

    Article  CAS  Google Scholar 

  • Maple HJ, Garlish RA, Rigau-Roca L et al (2012) Automated protein-ligand interaction screening by mass spectrometry. J Med Chem 55:837–851

    Article  CAS  PubMed  Google Scholar 

  • Marcu MG, Schulte TW, Neckers L (2000) Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins. J Natl Cancer Inst 92:242–248

    Article  CAS  PubMed  Google Scholar 

  • Marszałł MP, Moaddel R, Kole S, Gandhari M, Bernier M, Wainer IW (2008) Ligand and protein fishing with heat shock protein 90 coated magnetic beads. Anal Chem 80:7571–7575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer MP, Le Breton L (2015) Hsp90: breaking the symmetry. Mol Cell 58:8–20

    Article  CAS  PubMed  Google Scholar 

  • McCollum AK, TenEyck CJ, Stensgard B, Morlan BW, Ballman KV, Jenkins RB, Toft DO, Erlichman C (2008) P-glycoprotein-mediated resistance to HSP90-directed therapy is eclipsed by the heat shock response. Cancer Res 68:7419–7427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McConkey DJ, Zhu K (2008) Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist Updat 11:164–179

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin SH, Ventouras LA, Lobbezoo B, Jackson SE (2004) Independent ATPase activity of Hsp90 subunits creates a flexible assembly platform. J Mol Biol 344:813–826

    Article  CAS  PubMed  Google Scholar 

  • Miao ZY, Hu Y, Zhang XJ, Yang XT, Tang YY, Kang A, Zhu D (2018) Screening and identification of ligand-protein interactions using functionalized heat shock protein 90-fluorescent mesoporous silica-indium phosphide/zinc sulfide quantum dot nanocomposites. J Chromatogr A 1562:1–11

    Article  CAS  PubMed  Google Scholar 

  • Michał P, Marszałł RM, Krzysztof J, Michel B, Irving WW (2008) Initial synthesis and characterization of an immobilized heat shock protein 90 column for online determination of binding affinities. Anal Biochem 373:313–321

    Article  CAS  Google Scholar 

  • Mickler M, Hessling M, Ratzke C, Buchner J, Hugel T (2009) The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis. Nat Struct Mol Biol 16:281–286

    Article  CAS  PubMed  Google Scholar 

  • Minagawa S, Kondoh Y, Sueoka K, Osada H, Nakamoto H (2011) Cyclic lipopeptide antibiotics bind to the N-terminal domain of the prokaryotic Hsp90 to inhibit the chaperone activity. Biochem J 435:237–246

    Article  CAS  PubMed  Google Scholar 

  • Mishra P, Bolon DN (2014) Designed Hsp90 heterodimers reveal an asymmetric ATPase-driven mechanism in vivo. Mol Cell 53:344–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyata Y (2009) Protein kinase CK2 in health and disease: CK2: the kinase controlling the Hsp90 chaperone machinery. Cell Mol Life Sci 66:1840–1849

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki I, Simizu S, Ichimiya H, Kawatani M, Osada H (2008) Robust and systematic drug screening method using chemical arrays and the protein library: identification of novel inhibitors of carbonic anhydrase II. Biosci Biotechnol Biochem 72:2739–2749

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki I, Simizu S, Okumura H, Takagi S, Osada H (2010) A small molecule inhibitor shows that pirin regulates migration of melanoma cells. Nat Chem Biol 6:667–673

    Article  CAS  PubMed  Google Scholar 

  • Mollapour M, Neckers L (2012) Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochim Biophys Acta 1823:648–655

    Article  CAS  PubMed  Google Scholar 

  • Mollapour M, Tsutsumi S, Truman AW, Xu WP, Vaughan CK, Beebe K, Konstantinova A, Vourganti S, Panaretou B, Piper PW, Trepel JB, Prodromou C, Pearl LH, Neckers L (2011) Threonine 22 phosphorylation attenuates Hsp90 interaction with cochaperones and affects its chaperone activity. Mol Cell 41:672–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morelli L, Bernardi A, Sattin S (2014) Synthesis of potential allosteric modulators of Hsp90 by chemical glycosylation of Eupomatenoid-6. Carbohydr Res 390:33–41

    Article  CAS  PubMed  Google Scholar 

  • Moulick K, Ahn JH, Zong H, Rodina A, Cerchietti L, Gomes DaGama EM, Caldas-Lopes E, Beebe K, Perna F, Hatzi K, Vu LP, Zhao X, Zatorska D, Taldone T, Smith-Jones P, Alpaugh M, Gross SS, Pillarsetty N, Ku T, Lewis JS, Larson SM, Levine R, Erdjument-Bromage H, Guzman ML, Nimer SD, Melnick A, Neckers L, Chiosis G (2011) Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat Chem Biol 7:818–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muroi M, Kazami S, Noda K, Kondo H, Takayama H, Kawatani M, Usui T, Osada H (2010) Application of proteomic profiling based on 2D-DIGE for classification of compounds according to the mechanism of action. Chem Biol 17:460–470

    Article  CAS  PubMed  Google Scholar 

  • Neckers L (2002) Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 8:S55–S61

    Article  CAS  PubMed  Google Scholar 

  • Neckers L, Workman P (2012) Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 18:64–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • New SY, Aung KM, Lim GL, Hong S, Tan SK, Lu Y, Cheung E, Su X (2014) Fast screening of ligand-protein interactions based on ligand-induced protein stabilization of gold nanoparticles. Anal Chem 86:2361–2370

    Article  CAS  PubMed  Google Scholar 

  • Panaretou B, Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1998) ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J 17:4829–4836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pantoliano MW, Petrella EC, Kwasnoski JD, Lobanov VS, Myslik J, Graf E, Carver T, Asel E, Springer BA, Lane P, Salemme FR (2001) High-density miniaturized thermal shift assays as a general strategy for drug discovery. J Biomol Screen 6:429–440

    Article  CAS  PubMed  Google Scholar 

  • Park S, Shin I (2002) Fabrication of carbohydrate chips for studying protein-carbohydrate interactions. Angew Chem Int Ed 41:3180–3182

    Article  CAS  Google Scholar 

  • Pashtan I, Tsutsumi S, Wang SQ, Xu WP, Neckers L (2008) Targeting Hsp90 prevents escape of breast cancer cells from tyrosine kinase inhibition. Cell Cycle 7:2936–2941

    Article  CAS  PubMed  Google Scholar 

  • Pearl LH, Prodromou C (2000) Structure and in vivo function of Hsp90. Curr Opin Struct Biol 10:46–51

    Article  CAS  PubMed  Google Scholar 

  • Pearl LH, Prodromou C (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Ann Rev Biochem 75:271–294

    Article  CAS  PubMed  Google Scholar 

  • Pearl LH, Prodromou C, Workman P (2008) The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J 410:439–453

    Article  CAS  PubMed  Google Scholar 

  • Pellecchia M, Bertini I, Cowburn D et al (2008) Perspectives on NMR in drug discovery: a technique comes of age. Nat Rev Drug Discov 7:738–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pick E, Kluger Y, Giltnane JM, Moeder C, Camp RL, Rimm DL, Kluger HM (2007) High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res 67:2932–2937

    Article  CAS  PubMed  Google Scholar 

  • Piliarik M, Párová L, Homola J (2009) High-throughput SPR sensor for food safety. Biosens Bioelectron 24:1399–1404

    Article  CAS  PubMed  Google Scholar 

  • Prodromou C (2016) Mechanisms of Hsp90 regulation. Biochem J 473:2439–2452

    Article  CAS  PubMed  Google Scholar 

  • Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1997) Identification and structural characterization of the ATP/ADP – binding site in the Hsp90 molecular chaperone. Cell 90:65–75

    Article  CAS  PubMed  Google Scholar 

  • Qing LS, Tang N, Xue Y, Liang J, Liu YM, Liao X (2012) Identification of enzyme inhibitors using therapeutic target protein-magnetic nanoparticle conjugates. Anal Methods 4:1612–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Retzlaff M, Hagn F, Mitschke L, Hessling M, Gugel F, Kessler H, Richter K, Buchner J (2010) Asymmetric activation of the hsp90 dimer by its cochaperone aha1. Mol Cell 37:344–354

    Article  CAS  PubMed  Google Scholar 

  • Retzlaff M, Stahl M, Eberl HC, Lagleder S, Beck J, Kessler H, Buchner J (2009) Hsp90 is regulated by a switch point in the C-terminal domain. EMBO Rep 10:1147–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riccardi Sirtori F, Caronni D, Colombo M et al (2015) Establish an automated flow injection ESI-MS method for the screening of fragment based libraries: application to Hsp90. Eur J Pharm Sci 76:83–94

    Article  CAS  PubMed  Google Scholar 

  • Roe SM, Prodromou C, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42:260–266

    Article  CAS  PubMed  Google Scholar 

  • Rohl A, Rohrberg J, Buchner J (2013) The chaperone Hsp90: changing partners for demanding clients. Trends Biochem Sci 38:253–262

    Article  CAS  PubMed  Google Scholar 

  • Rowlands MG, Newbatt YM, Prodromou C, Pearl LH, Workman P, Aherne W (2004) High-throughput screening assay for inhibitors of heat-shock protein 90 ATPase activity. Anal Biochem 327:176–183

    Article  CAS  PubMed  Google Scholar 

  • Schopf HF, Maximilian MB, Johannes B (2017) The Hsp90 chaperone machinery. Nat Rev Mol Cell Bi 18:345–360

    Article  CAS  Google Scholar 

  • Scroggins BT, Robzyk K, Wang D, Marcu MG, Tsutsumi S, Beebe K, Cotter RJ, Felts S, Toft D, Karnitz L, Rosen N, Neckers L (2007) An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol Cell 25:151–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiau AK, Harris SF, Southworth DR, Agard DA (2006) Structural analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127:329–340

    Article  CAS  PubMed  Google Scholar 

  • Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274:1531–1534

    Article  CAS  PubMed  Google Scholar 

  • Sidera K, Patsavoudi E (2014) HSP90 inhibitors: current development and potential in cancer therapy. Recent Pat Anticancer Drug Discov 9:1–20

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Ravichandran S, Spelman K, Fugmann SD, Moaddel R (2014) The identification of a novel SIRT6 modulator from Trigonella foenum-graecum using ligand fishing with protein coated magnetic beads. J Chromatogr B: Anal Technol Biomed Life Sci 968:105–111

    Article  CAS  Google Scholar 

  • Šípová H, Homola J (2013) Surface plasmon resonance sensing of nucleic acids: a review. Anal Chim Acta 773:9–23

    Article  CAS  PubMed  Google Scholar 

  • Soga S, Akinaga S, Shiotsu Y (2013) Hsp90 inhibitors as anti-cancer agents, from basic discoveries to clinical development. Curr Pharm Design 19:366–376

    Article  CAS  Google Scholar 

  • Soga S, Shiotsu Y, Akinaga S, Sharma SV (2003) Development of radicicol analogues. Curr Cancer Drug Targets 3:359–369

    Article  CAS  PubMed  Google Scholar 

  • Soroka J, Wandinger SK, Mäusbacher N, Schreiber T, Richter K, Daub H, Buchner J (2012) Conformational switching of the molecular chaperone Hsp90 via regulated phosphorylation. Mol Cell 45:517–528

    Article  CAS  PubMed  Google Scholar 

  • Southworth DR, Agard DA (2008) Species-dependent ensembles of conserved conformational states define the Hsp90 chaperone ATPase cycle. Mol Cell 32:631–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Southworth DR, Agard DA (2011) Client-loading conformation of the Hsp90 molecular chaperone revealed in the Cryo-EM structure of the human Hsp90: hop complex. Mol Cell 42:771–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanton BZ, Peng LF, Maloof N, Nakai K, Wang X, Duffner JL, Taveras KM, Hyman JM, Lee SW, Koehler AN, Chen JK, Fox JL, Mandinova A, Schreiber SL (2009) A small molecule that binds hedgehog and blocks its signaling in human cells. Nat Chem Biol 5:154–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark JL, Powers R (2011) Application of NMR and molecular docking in structure-based drug discovery. Top Curr Chem 326:1–34

    Article  CAS  Google Scholar 

  • Sun HP, Jia JM, Jiang F et al (2014) Identification and optimization of novel Hsp90 inhibitors with tetrahydropyrido[4,3-d]pyrimidines core through shape-based screening. Eur J Med Chem 79:399–412

    Article  CAS  PubMed  Google Scholar 

  • Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528

    Article  CAS  PubMed  Google Scholar 

  • Taipale M, Krykbaeva I, Koeva M, Kayatekin C, Westover KD, Karras GI, Lindquist S (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150:987–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taldone T, Sun W, Chiosis G (2009) Discovery and development of heat shock protein 90 inhibitors. Bioorg Med Chem 7:2225–2235

    Article  CAS  Google Scholar 

  • Trepel J, Mollapour M, Giaccone G, Neckers L (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10:537–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uttamchandani M, Wang J, Yao SQ (2006) Protein and small molecule microarrays: powerful tools for high-throughput proteomics. Mol BioSyst 2:58–68

    Article  CAS  PubMed  Google Scholar 

  • Van den Heuvel RH, Heck AJ (2004) Native protein mass spectrometry: from intact oligomers to functional machineries. Curr Opin Chem Biol 8:519–526

    Article  CAS  PubMed  Google Scholar 

  • Vegas AJ, Fuller JH, Koehler AN (2008) Small-molecule microarrays as tools in ligand discovery. Chem Soc Rev 37:1385–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vivat Hannah V, Atmanene C, Zeyer D, Van Dorsselaer A, Sanglier-Cianfàrani S (2009) Native MS: an “ESI” way to support structure- and fragment-based drug discovery. Future Med Chem 2:35–50

    Article  Google Scholar 

  • Voellmy R, Boellmann F (2007) Chaperone regulation of the heat shock protein response. Adv Exp Med Biol 594:89–99

    Article  PubMed  Google Scholar 

  • Warner G, Illy C, Pedro L, Roby P, Bossé R (2004) AlphaScreen kinase HTS platforms. Curr Med Chem 11:721–730

    Article  CAS  PubMed  Google Scholar 

  • Whitesell L, Lin NU (2012) HSP90 as a platform for the assembly of more effective cancer chemotherapy. Biochim Biophys Acta Mol Cell Res 1823:756–766

    Article  CAS  Google Scholar 

  • Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772

    Article  CAS  PubMed  Google Scholar 

  • Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (1994) Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 91:8324–8328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willett P (2006) Similarity-based virtual screening using 2D fingerprints. Drug Discov Today 11:1046–1053

    Article  CAS  PubMed  Google Scholar 

  • Williamson MP (2013) Using chemical shift perturbation to characterise ligand binding. Prog Nucl Magn Reson Spectrosc 73:1–16

    Article  CAS  PubMed  Google Scholar 

  • Xu XL, Sun HP, Liu F et al (2014) Discovery and bioevaluation of novel pyrazolopyrimidine analogs as competitive Hsp90 inhibitors through shape-based similarity screening. Mol Inform 33:293–306

    Article  CAS  PubMed  Google Scholar 

  • Yi F, Regan L (2008) A novel class of small molecule inhibitors of Hsp90. ACS Chem Biol 3:645–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi F, Zhu P, Southall N, Inglese J, Austin CP, Zheng W, Regan L (2009) An AlphaScreen-based high-throughput screen to identify inhibitors of Hsp90-cochaperone interaction. J Biomol Screen 14:273–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Monsma F (2010) Fluorescence-based thermal shift assays. Curr Opin Drug Discov Devel 13:389–402

    CAS  PubMed  Google Scholar 

  • Zhu Y, Li Z, Chen M, Cooper HM, Lu GQ, Xu ZP (2012) Synthesis of robust sandwich-like SiO2@CdTe@SiO2 fluorescent nanoparticles for cellular imaging. Chem Mater 24:421–423

    Article  CAS  Google Scholar 

  • Zierer BK, Rübbelke M, Tippel F, Madl T, Schopf FH, Rutz DA, Richter K, Sattler M, Buchner J (2016) Importance of cycle timing for the function of the molecular chaperone Hsp90. Nat Struct Mol Biol 23:1020–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project of National Natural Science Foundation of China (81573388). This work was also sponsored by ‘Qing Lan Project of Jiangsu province’ and ‘Six talent peaks project of Jiangsu Province (YY-032)’. We also greatly appreciate the sponsorship of ‘A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions’ (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, Y., Zhang, X.J., Yang, X.T., Tang, Y.Y., Hu, L.Y., Zhu, D. (2019). Screening Technique for Heat Shock Protein 90 Inhibitors from Natural Products. In: Asea, A., Kaur, P. (eds) Heat Shock Protein 90 in Human Diseases and Disorders. Heat Shock Proteins, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-23158-3_19

Download citation

Publish with us

Policies and ethics