Skip to main content

Hsp90: A Target for Susceptibilities and Substitutions in Biotechnological and Medicinal Application

  • Chapter
  • First Online:
  • 523 Accesses

Part of the book series: Heat Shock Proteins ((HESP,volume 19))

Abstract

A main influencer of the chaperome is the environmental stress eliciting continuously degraded proteins. To avoid proteotoxic stress, which hinders the protein homeostasis and cell survival, most proteins are accompanied from the early existence on by heat shock proteins (HSP) and sequestrated into different routes of renaturation, de novo folding or denaturation. Therefore, the regulation of Hsp90 presence and activity is relevant for most cells and their function. In this position, Hsp90 can decide the fate between health and disease by selective refolding of denatured proteins and is a player in the evolution. From the last century on, Hsp90 was validated as a target due to its susceptibility for natural products and to make them perfect with the aim to hinder refolding and enhance the proteotoxic stress. In this review, the links between natural producer, chemical synthesis with Hsp90 as a target as well as alternative chaperoning routes by chemical compounds are illuminated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CFTR:

Cystic fibrosis transmembrane conductance regulator

HSP:

Heat shock proteins

NBD:

Nucleotide binding domain

References

  • Abdalla Z, Walsh T, Thakker N, Ward CM (2017) Loss of epithelial markers is an early event in oral dysplasia and is observed within the safety margin of dysplastic and T1 OSCC biopsies. PLoS One 12:e0187449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adelstein DJ, Li Y, Adams GL et al (2003) An intergroup phase III comparison of standard radiation therapy and two schedules of concurrent chemoradiotherapy in patients with unresectable squamous cell head and neck cancer. J Clin Oncol 21:92–98

    Article  PubMed  Google Scholar 

  • Agrawal L, Engel KB, Greytak SR, Moore HM (2018) Understanding preanalytical variables and their effects on clinical biomarkers of oncology and immunotherapy. Semin Cancer Biol 52:26–38

    Article  CAS  PubMed  Google Scholar 

  • Alam Q, Alam MZ, Sait KHW et al (2017) Translational shift of HSP90 as a novel therapeutic target from cancer to neurodegenerative disorders: an emerging trend in the cure of Alzheimer’s and Parkinson’s diseases. Curr Drug Metab 18:868–876

    Article  CAS  PubMed  Google Scholar 

  • Aridon P, Geraci F, Turturici G, D’Amelio M, Savettieri G, Sconzo G (2011) Protective role of heat shock proteins in Parkinson’s disease. Neurodegener Dis 8:155–168

    Article  CAS  PubMed  Google Scholar 

  • Baselga J, Trigo JM, Bourhis J et al (2005) Phase II multicenter study of the antiepidermal growth factor receptor monoclonal antibody cetuximab in combination with platinum-based chemotherapy in patients with platinum-refractory metastatic and/or recurrent squamous cell carcinoma of the head and neck. J Clin Oncol 23:5568–5577

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya K, Bernasconi L, Picard D (2018) Luminescence resonance energy transfer between genetically encoded donor and acceptor for protein-protein interaction studies in the molecular chaperone HSP70/HSP90 complexes. Sci Rep 8:2801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blacklock K, Verkhivker GM (2014) Allosteric regulation of the Hsp90 dynamics and stability by client recruiter cochaperones: protein structure network modeling. PLoS One 9:e86547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borderud SP, Li Y, Burkhalter JE, Sheffer CE, Ostroff JS (2014) Electronic cigarette use among patients with cancer: characteristics of electronic cigarette users and their smoking cessation outcomes. Cancer 120:3527–3535

    Article  PubMed  Google Scholar 

  • Byrd KM, Subramanian C, Sanchez J et al (2016) Synthesis and biological evaluation of novobiocin core analogues as Hsp90 inhibitors. Chemistry 22:6921–6931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calderwood SK (2018) Heat shock proteins and cancer: intracellular chaperones or extracellular signalling ligands? Philos Trans R Soc Lond Ser B Biol Sci 373:20160524

    Article  CAS  Google Scholar 

  • Chen Y, Wang B, Liu D et al (2014) Hsp90 chaperone inhibitor 17-AAG attenuates Aβ-induced synaptic toxicity and memory impairment. J Neurosci 34:2464–2470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Xing J, Hu X et al (2017) Inhibition of heat shock protein 90 rescues glucocorticoid-induced bone loss through enhancing bone formation. J Steroid Biochem Mol Biol 171:236–246

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Feder ME, Kang L (2018) Evolution of heat-shock protein expression underlying adaptive responses to environmental stress. Mol Ecol 27:3040–3054

    Article  PubMed  Google Scholar 

  • Cheng SH, Gregory RJ, Marshall J et al (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63:827–834

    Article  CAS  PubMed  Google Scholar 

  • Cook E, Eastman G, Bunn P (1956) The use of novobiocin in the management of acute pneumococcal and staphylococcal infections. Antibiot Annu 1:396–401

    Google Scholar 

  • Cunningham LL, Brandon CS (2006) Heat shock inhibits both aminoglycoside- and cisplatin-induced sensory hair cell death. JARO – J Assoc Res Otolaryngol 7:299–307

    Article  PubMed  Google Scholar 

  • Davenport J, Manjarrez JR, Peterson L, Krumm B, Blagg BS, Matts RL (2011) Gambogic acid, a natural product inhibitor of Hsp90. J Nat Prod 74:1085–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeBoer C, Meulman PA, Wnuk RJ, Peterson DH (1970) Geldanamycin, a new antibiotic. J Antibiot (Tokyo) 23:442–447

    Article  CAS  Google Scholar 

  • Devaney E, Gillan V (2016) Hsp90 inhibitors in parasitic nematodes: prospects and challenges. Curr Top Med Chem 16:2805–2811

    Article  CAS  PubMed  Google Scholar 

  • Dezwaan DC, Freeman BC (2008) HSP90. The Rosetta stone for cellular protein dynamics? Cell cycle (Georgetown, Tex) 7:1006–1012

    Article  CAS  Google Scholar 

  • Dickey CA, Kamal A, Lundgren K et al (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117:648–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dlugosz A, Janecka A (2017) Novobiocin analogs as potential anticancer agents. Mini Rev Med Chem 17:728–733

    Article  CAS  PubMed  Google Scholar 

  • Du K, Sharma M, Lukacs GL (2005) The Delta F 508 cystic fibrosis mutation impairs domain- domain interactions and arrests post- translational folding of CFTR. Nat Struct Mol Biol 12:17–25

    Article  CAS  PubMed  Google Scholar 

  • Dylawerska A, Barczak W, Wegner A, Golusinski W, Suchorska WM (2017) Association of DNA repair genes polymorphisms and mutations with increased risk of head and neck cancer: a review. Med Oncol 34:197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Echeverría PC, Bernthaler A, Dupuis P, Mayer B, Picard D (2011) An interaction network predicted from public data as a discovery tool: application to the Hsp90 molecular chaperone machine. PLoS One 6:e26044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edkins AL (2015) CHIP: a co-chaperone for degradation by the proteasome. Subcell Biochem 78:219–242

    Article  CAS  PubMed  Google Scholar 

  • Enokida T, Okano S, Fujisawa T, Ueda Y, Uozumi S, Tahara M (2018) Paclitaxel plus cetuximab as 1st line chemotherapy in platinum-based chemoradiotherapy-refractory patients with squamous cell carcinoma of the head and neck. Front Oncol 8:339

    Article  PubMed  PubMed Central  Google Scholar 

  • Eurostat (2017) Causes of death – deaths by country of residence and occurrence. https://ec.europa.eu/eurostat/web/products-eurostat-news/-/EDN-20170203-1?inheritRedirect=true

  • Ferraro M, D’Annessa I, Moroni E et al (2019) Allosteric modulators of HSP90 and HSP70: dynamics meets function through structure-based drug design. J Med Chem 62:60–87

    Article  CAS  PubMed  Google Scholar 

  • Forster MD, Devlin MJ (2018) Immune checkpoint inhibition in head and neck cancer. Front Oncol 8:310

    Article  PubMed  PubMed Central  Google Scholar 

  • Forsythe HL, Jarvis JL, Turner JW, Elmore LW, Holt SE (2001) Stable association of hsp90 and p23, but not hsp70, with active human telomerase. J Biol Chem 276:15571–15574

    Article  CAS  PubMed  Google Scholar 

  • Franke J, Eichner S, Zeilinger C, Kirschning A (2013) Targeting heat-shock-protein 90 (Hsp90) by natural products. Geldanamycin, a show case in cancer therapy. Nat Prod Rep 30:1299–1323

    Article  CAS  PubMed  Google Scholar 

  • Fries GR, Gassen NC, Rein T (2017) The FKBP51 glucocorticoid receptor co-chaperone: regulation, function, and implications in health and disease. Int J Mol Sci 18:1–31

    Article  CAS  Google Scholar 

  • Fu Y, Xu X, Huang D et al (2017) Plasma heat shock protein 90alpha as a biomarker for the diagnosis of liver cancer: an official, large-scale, and multicenter clinical trial. EBioMedicine 24:56–63

    Article  PubMed  PubMed Central  Google Scholar 

  • Gammie T, Lu CY, Babar ZU (2015) Access to orphan drugs: a comprehensive review of legislations, regulations and policies in 35 countries. PLoS One 10:e0140002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Yechikov S, Vazquez AE, Chen D, Nie L (2013) Distinct roles of molecular chaperones HSP90α and HSP90β in the biogenesis of KCNQ4 channels. PLoS One 8:1–10

    Google Scholar 

  • Geller R, Pechmann S, Acevedo A, Andino R, Frydman J (2018) Hsp90 shapes protein and RNA evolution to balance trade-offs between protein stability and aggregation. Nat Commun 9:1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gentzsch M, Mall MA (2018) Ion channel modulators in cystic fibrosis. Chest 154:383–393

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerecitano JF, Modi S, Rampal R et al (2015) Phase I trial of the HSP-90 inhibitor PUH71. J Clin Oncol (Meeting Abstracts) 33:253

    Google Scholar 

  • Gestwicki JE, Shao H (2019) Inhibitors and chemical probes for molecular chaperone networks. J Biol Chem 294:2151–2161

    Article  CAS  PubMed  Google Scholar 

  • Gong T-W, Fairfield DA, Fullarton L et al (2012) Induction of heat shock proteins by hyperthermia and noise overstimulation in hsf1 −/− mice. J Assoc Res Otolaryngol 13:29–37

    Article  PubMed  Google Scholar 

  • Gregoire V, Lefebvre JL, Licitra L, Felip E, Group E.E. E. G. W et al (2010) Squamous cell carcinoma of the head and neck: EHNS-ESMO-ESTRO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncologia 21:184–186

    Article  Google Scholar 

  • Halicek M, Little JV, Wang X, et al (2018) Optical biopsy of head and neck cancer using hyperspectral imaging and convolutional neural networks. Proc SPIE Int Soc Opt Eng Jan–Feb. 10469

    Google Scholar 

  • Hendriksma M, Montagne MW, Langeveld TPM, Veselic M, van Benthem PPG, Sjögren EV (2018) Evaluation of surgical margin status in patients with early glottic cancer (Tis-T2) treated with transoral CO2 laser microsurgery, on local control. Eur Arch Otorhinolaryngol 275:2333–2340

    Article  PubMed  PubMed Central  Google Scholar 

  • Hinni ML, Ferlito A, Brandwein-Gensler MS et al (2013) Surgical margins in head and neck cancer: a contemporary review. Head Neck 35:1362–1370

    Article  PubMed  Google Scholar 

  • Holton AB, Sinatra FL, Kreahling J, Conway AJ, Landis DA, Altiok S (2017) Microfluidic biopsy trapping device for the real-time monitoring of tumor microenvironment. PLoS One 12:e0169797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hombach A, Clos J (2014) No stress – Hsp90 and signal transduction in Leishmania. Parasitology 141:1156–1166

    Article  CAS  PubMed  Google Scholar 

  • Hong D, Said R, Falchook G et al (2013) Phase I study of BIIB028, a selective heat shock protein 90 inhibitor, in patients with refractory metastatic or locally advanced solid tumors. Clin Cancer Res 19:4824–4831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honoré FA, Méjean V, Genest O (2017) Hsp90 is essential under heat stress in the bacterium Shewanella oneidensis. Cell Rep 19:680–687

    Article  CAS  PubMed  Google Scholar 

  • Hooper PL, Durham HD, Török Z, Hooper PL, Crul T, Vígh L (2016) The central role of heat shock factor 1 in synaptic fidelity and memory consolidation. Cell Stress Chaperones 21:745–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoter A, El-Sabban M, Naim H (2018) The HSP90 family: structure, regulation, function, and implications in health and disease. Int J Mol Sci 19:2560

    Article  CAS  PubMed Central  Google Scholar 

  • Inda C, Bolaender A, Wang T, Gandu SR, Koren J (2016) Stressing out Hsp90 in neurotoxic proteinopathies. Curr Top Med Chem 16:2829–2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarosz DF, Lindquist S (2010) Hsp90 and environmental stress transform the adaptive value of natural genetic variation. Science 330:1820–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jhaveri K, Taldone T, Modi S, Chiosis G (2012) Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim Biophys Acta 1823:742–755

    Article  CAS  PubMed  Google Scholar 

  • Jhaveri K, Ochiana SO, Dunphy MP et al (2014) Heat shock protein 90 inhibitors in the treatment of cancer: current status and future directions. Expert Opin Investig Drugs 23:611–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson JL (2012) Evolution and function of diverse Hsp90 homologs and cochaperone proteins. Biochim Biophys Acta, Mol Cell Res 1823:607–613

    Article  CAS  PubMed  Google Scholar 

  • Joshi S, Wang T, Araujo TLS, Sharma S, Brodsky JL, Chiosis G (2018) Adapting to stress – chaperome networks in cancer. Nat Rev Cancer 18:562–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ et al (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    Article  CAS  PubMed  Google Scholar 

  • Kanwar A, Eduful BJ, Barbeto L et al (2017) Synthesis and activity of a new series of antileishmanial agents. ACS Med Chem Lett 8:797–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khandelwal A, Hall JA, Blagg BS (2013) Synthesis and structure-activity relationships of EGCG analogues, a recently identified Hsp90 inhibitor. J Org Chem 78:7859–7884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khandelwal A, Crowley VM, Blagg BSJ (2016) Natural product inspired N-terminal Hsp90 inhibitors: from bench to bedside? Med Res Rev 36:92–118

    Article  CAS  PubMed  Google Scholar 

  • Khandelwal A, Kent CN, Balch M et al (2018) Structure-guided design of an Hsp90β N-terminal isoform-selective inhibitor. Nat Commun 9:425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Chiaw P, Eckford PD, Bear CE (2011) Insights into the mechanisms underlying CFTR channel activity, the molecular basis for cystic fibrosis and strategies for therapy. Essays Biochem 50:233–248

    Article  PubMed  Google Scholar 

  • Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355

    Article  CAS  PubMed  Google Scholar 

  • Koren J 3rd, Jinwal UK, Lee DC et al (2009) Chaperone signalling complexes in Alzheimer’s disease. J Cell Mol Med 13:619–630

    Article  CAS  PubMed  Google Scholar 

  • Kravats AN, Hoskins JR, Reidy M et al (2018) Functional and physical interaction between yeast Hsp90 and Hsp70. Proc Natl Acad Sci U S A 115:E2210–E2219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krüger K, Reichel T, Zeilinger C (2019) Role of heat shock proteins 70/90 in exercise physiology, exercise immunology and their diagnostic potential in sports. J. Appl. Physiol. (1985) 126:916–927. in press

    Article  CAS  Google Scholar 

  • Lackie RE, Maciejewski A, Ostapchenko VG et al (2017) The Hsp70/Hsp90 chaperone machinery in neurodegenerative diseases. Front Neurosci 11:1–23

    Article  Google Scholar 

  • Lee DJ, Eun YG, Rho YS et al (2018) Three distinct genomic subtypes of head and neck squamous cell carcinoma associated with clinical outcomes. Oral Oncol 85:44–51

    Article  PubMed  Google Scholar 

  • Lewis HA, Buchanan SG, Burley SK et al (2004) Structure of nucleotide- binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J 23:282–293

    Article  CAS  PubMed  Google Scholar 

  • Li J, Buchner J (2012) Structure, function and regulation of the Hsp90 machinery. Biom J 36:106–117

    CAS  Google Scholar 

  • Li T, Jiang HL, Tong YG, Lu JJ (2018) Targeting the Hsp90-Cdc37-client protein interaction to disrupt Hsp90 chaperone machinery. J Hematol Oncol 11:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loeb LA, Loeb KR, Anderson JP (2003) Multiple mutations and cancer. Proc Natl Acad Sci U S A 100:776–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukacs GL, Verkman AS (2012) CFTR: folding, misfolding and correcting the ΔF508 conformational defect. Trends Mol Med 18:81–91

    Article  CAS  PubMed  Google Scholar 

  • Luzzatto L, Hyry HI, Schieppati A et al (2018) Second workshop on orphan drugs participants. Outrageous prices of orphan drugs: a call for collaboration. Lancet 392:791–794

    Article  PubMed  Google Scholar 

  • Maeda Y, Fukushima K, Kariya S, Orita Y, Nishizaki K (2012) Intratympanic dexamethasone up-regulates Fkbp5 in the cochleae of mice in vivo. Acta Otolaryngol 132:4–9

    Article  CAS  PubMed  Google Scholar 

  • Marioni G, Marchese-Ragona R, Cartei G, Marchese F, Staffieri A (2006) Current opinion in diagnosis and treatment of laryngeal carcinoma. Cancer Treat Rev 32:504–515

    Article  PubMed  Google Scholar 

  • Marur S, Forastiere AA (2008) Head and neck cancer: changing epidemiology, diagnosis, and treatment. Mayo Clin Proc 83:489–501

    Article  PubMed  Google Scholar 

  • Mayer MP, Le Breton L (2015) Hsp90: breaking the symmetry. Mol Cell 58:8–20

    Article  CAS  PubMed  Google Scholar 

  • McFarland NR, Dimant H, Kibuuka L et al (2014) Chronic treatment with novel small molecule Hsp90 inhibitors rescues striatal dopa-mine levels but not alpha-synuclein-induced neuronal cell loss. PLoS One 9:e86048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mechler K, Mountford WK, Hoffmann GF, Ries M (2015) Pressure for drug development in lysosomal storage disorders – a quantitative analysis thirty years beyond the US orphan drug act. Orphanet J Rare Dis 10:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Millson SH, Chun C-S, Roe SM et al (2011) Features of the Streptomyces hygroscopicus HtpG reveal how partial geldanamycin resistance can arise by mutation to the ATP binding pocket of a eukaryotic Hsp90. FASEB J 25:3828–3837

    Article  CAS  PubMed  Google Scholar 

  • Mitchell DA, Kanatas A, Murphy C, Chengot P, Smith AB, Ong TK (2018) Margins and survival in oral cancer. Br J Oral Maxillofac Surg 56:820–829

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi-Ostad-Kalayeh S, Hrupins V, Helmsen S et al (2017) Development of a microarray-based assay for efficient testing of new HSP70/DnaK inhibitors. Bioorg Med Chem 25:6345–6352

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi-Ostad-Kalayeh S, Stahl F, Scheper T et al (2018) Heat shock proteins revisited: using a mutasynthetically generated Reblastatin library to compare the inhibition of human and Leishmania Hsp90s. Chembiochem 19:562–574

    Article  CAS  PubMed  Google Scholar 

  • Morris M, Maeda S, Vossel K, Mucke L (2011) The many faces of tau. Neuron 70:410–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moulin E, Zoete V, Barluenga S, Karplus M, Winssinger N (2005) Design, synthesis, and biological evaluation of HSP90 inhibitors based on conformational analysis of radicicol and its analogues. J Am Chem Soc 127:6999–7004

    Article  CAS  PubMed  Google Scholar 

  • Nakazono A, Adachi N, Takahashi H et al (2018) Pharmacological induction of heat shock proteins ameliorates toxicity of mutant PKCγ in spinocerebellar ataxia type 14. J Biol Chem 293:14758–14774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nourbakhsh F, Atabaki R, Roohbakhsh A (2018) The role of orphan G protein-coupled receptors in the modulation of pain: a review. Life Sci 212:59–69

    Article  CAS  PubMed  Google Scholar 

  • Omura S, Iwai Y, Takahashi Y et al (1979) Herbimycin, a new antibiotic produced by a strain of Streptomyces. J Antibiot (Tokyo) 32:255–261

    Article  CAS  Google Scholar 

  • O’Sullivan BP, Orenstein DM, Milla CE (2013) Pricing for orphan drugs: will the market bear what society cannot? JAMA 310:1343–1344

    Article  PubMed  Google Scholar 

  • Patel R, Williams-Dautovich J, Cummins CL (2014) Minireview: new molecular mediators of glucocorticoid receptor activity in metabolic tissues. Mol Endocrinol 28:999–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piper PW, Millson SH (2012) Spotlight on the microbes that produce heat shock protein 90-targeting antibiotics. Open Biol 2:120138

    Article  PubMed  PubMed Central  Google Scholar 

  • Polanska H, Raudenska M, Gumulec J et al (2014) Clinical significance of head and neck squamous cell cancer biomarkers. Oral Oncol 50:168–177

    Article  CAS  PubMed  Google Scholar 

  • Posfai D, Eubanks AL, Keim AI et al (2018) Identification of Hsp90 inhibitors with anti-plasmodium activity. Antimicrob Agents Chemother 62:e01799–e01717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powers AD, Palecek SP (2012) Protein analytical assays for diagnosing, monitoring, and choosing treatment for cancer patients. J Healthc Eng 3:503–534

    Article  PubMed  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Rana P, Chawla S (2018) Orphan drugs: trends and issues in drug development. J Basic Clin Physiol Pharmacol 29:437–446

    Article  PubMed  Google Scholar 

  • Reis SD, Pinho BR, Oliveira JMA (2017) Modulation of molecular chaperones in Huntington’s disease and other polyglutamine disorders. Mol Neurobiol 54:5829–5854

    Article  CAS  PubMed  Google Scholar 

  • Riebold M, Kozany C, Freiburger L et al (2015) A C-terminal HSP90 inhibitor restores glucocorticoid sensitivity and relieves a mouse allograft model of Cushing disease. Nat Med 21:276–280

    Article  CAS  PubMed  Google Scholar 

  • Riordan JR, Rommens JM, Kerem B et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    Article  CAS  PubMed  Google Scholar 

  • Ritossa F (1962a) A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  • Ritossa F (1962b) A new puffing pattern induced by temperature shock and DNP in drosophila. Cell Mol Life Sci 18:571–573

    Article  CAS  Google Scholar 

  • Roe MS, Wahab B, Török Z, Horváth I, Vigh L, Prodromou C (2018) Dihydropyridines allosterically modulate Hsp90 providing a novel mechanism for heat shock protein co-induction and neuroprotection. Front Mol Biosci 5:1–14

    Article  CAS  Google Scholar 

  • Röhl A, Wengler D, Madl T et al (2015) Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules. Nat Commun 6:6655

    Article  CAS  PubMed  Google Scholar 

  • Rose WC, Wild R (2004) Therapeutic synergy of oral taxane BMS-275183 and cetuximab versus human tumor xenografts. Clin Cancer Res 10:7413–7417

    Article  CAS  PubMed  Google Scholar 

  • Sager RA, Woodford MR, Neckers L, Mollapour M (2018) Detecting posttranslational modifications of Hsp90. Methods Mol Biol 1709:209–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saibil H (2013) Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol 14:630–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki K, Yasuda H, Onodera K (1979) Growth inhibition of virus transformed cells in vitro and antitumor activity in vivo of geldanamycin and its derivatives. J Antibiot (Tokyo) 32:849–851

    Article  CAS  Google Scholar 

  • Schax E, Walter JG, Märzhäuser H et al (2014) Microarray-based screening of heat shock protein inhibitors. J Biotechnol 180:1–9

    Article  CAS  PubMed  Google Scholar 

  • Schmitt H, Roemer A, Zeilinger C et al (2018) Heat shock proteins in human perilymph: implications for cochlear implantation. Otol Neurotol 39:37–44

    Article  PubMed  Google Scholar 

  • Schuster M, Schnell L, Feigl P et al (2017) The Hsp90 machinery facilitates the transport of diphtheria toxin into human cells. Sci Rep 7:613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah JP, Karnell LH, Hoffman HT et al (1997) Patterns of care for cancer of the larynx in the United States. Arch Otolaryngol Head Neck Surg 123:475–483

    Article  CAS  PubMed  Google Scholar 

  • Sheehan-Rooney K, Swartz ME, Zhao F, Liu D, Eberhart JK (2013) Ahsa1 and Hsp90 activity confers more severe craniofacial phenotypes in a zebrafish model of hypoparathyroidism, sensorineural deafness and renal dysplasia (HDR). Dis Model Mech 6:1285–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Van de Water R, Hong et al (2012) EC144 is a potent inhibitor of the heat shock protein 90. J Med Chem 55:7786–7795

    Article  CAS  PubMed  Google Scholar 

  • Shin JM, Kamarajan P, Fenno JC, Rickard AH, Kapila YL (2016) Metabolomics of head and neck cancer: a mini-review. Front Physiol 7:526

    Article  PubMed  PubMed Central  Google Scholar 

  • Shirakami Y, Shimizu M, Moriwaki H (2012) Cancer chemoprevention with green tea catechins: from bench to bed. Curr Drug Targets 13:1842–1857

    Article  CAS  PubMed  Google Scholar 

  • Shrestha L, Patel HJ, Chiosis G (2016) Chemical tools to investigate mechanisms associated with HSP90 and HSP70 in disease. Cell chemical biology 23:158–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith PC, Karpowich N, Millen L et al (2002) ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol Cell 10:139–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sõti C, Nagy E, Giricz Z, Vígh L, Csermely P, Ferdinandy P (2005) Heat shock proteins as emerging therapeutic targets. Br J Pharmacol 146:769–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiegelberg D, Kuku G, Selvaraju R, Nestor M (2014) Characterization of CD44 variant expression in head and neck squamous cell carcinomas. Tumour Biol 35:2053–2062

    Article  CAS  PubMed  Google Scholar 

  • Srivastava BI, DiCioccio RA, Rinehart KL Jr, Li LH (1978) Preferential inhibition of terminal deoxynucleotidyltransferase activity among deoxyribonucleic acid polymerase activities of leukemic and normal cells by geldanamycin, streptoval C, streptovarone, and dapmavarone. Mol Pharmacol 14:442–447

    CAS  PubMed  Google Scholar 

  • Starr TN, Flynn JM, Mishra P, Bolon DNA, Thornton JW (2018) Pervasive contingency and entrenchment in a billion years of Hsp90 evolution. Proc Natl Acad Sci U S A 115:4453–4458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Supek F, Lehner B (2017) Clustered mutation signatures reveal that error-prone DNA repair targets mutations to active genes. Cell 170:534–547.e23

    Article  CAS  PubMed  Google Scholar 

  • Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis. Emerging mechanistic insights. Nature reviews Mol Cell Biol 11:515–528

    Article  CAS  Google Scholar 

  • Tamaki A, Miles BA, Lango M, Kowalski L, Zender CA (2018) AHNS series: do you know your guidelines? Review of current knowledge on laryngeal cancer. Head Neck 40:170–181

    Article  PubMed  Google Scholar 

  • Tanida S, Hasegawa T, Higashide E (1980) Macbecins I and II, new antitumor antibiotics. I. Producing organism, fermentation and antimicrobial activities. J Antibiot (Tokyo) 33:199–204

    Article  CAS  Google Scholar 

  • Thirstrup K, Sotty F, Montezinho LC et al (2016) Linking HSP90 target occupancy to HSP70 induction and efficacy in mouse brain. Pharmacol Res 104:197–205

    Article  CAS  PubMed  Google Scholar 

  • Thomas Robbins K, Triantafyllou A, Suárez C et al (2019) Surgical margins in head and neck cancer: intra- and postoperative considerations. Auris Nasus Larynx 46:10–17

    Article  CAS  PubMed  Google Scholar 

  • Tillet Y, Maillols-Perroy AC (2015) Orphan drugs: underrated opportunities for the developers in Europe. Therapie 70:351–357

    Article  PubMed  Google Scholar 

  • Trepel J, Mollapour M, Giaccone G, Neckers L (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10:537–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trune DR, Canlon B (2012) Corticosteroid therapy for hearing and balance disorders. Anat Rec Adv Integr Anat Evol Biol 295:1928–1943

    Article  CAS  Google Scholar 

  • Van Goor F, Hadida S, Grootenhuis PD et al (2009) Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci U S A 106:18825–18830

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Goor F, Hadida S, Grootenhuis PD et al (2011) Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci U S A 108:18843–18848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaughan CK, Gohlke U, Sobott F et al (2006) Structure of an Hsp90-Cdc37-Cdk4 complex. Mol Cell 23:697–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verba KA, Wang RY, Arakawa A et al (2016) Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase. Science 352:1542–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verkhivker GM (2018) Dynamics-based community analysis and perturbation response scanning of allosteric interaction networks in the TRAP1 chaperone structures dissect molecular linkage between conformational asymmetry and sequential ATP hydrolysis. Biochim Biophys Acta Proteins Proteom 1866:899–912

    Article  CAS  PubMed  Google Scholar 

  • Vetrivel KS, Kodam A, Gong P et al (2008) Localization and regional distribution of p23/TMP21 in the brain. Neurobiol Dis 32:37–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wandinger SK, Richter K, Buchner J (2008) The Hsp90 chaperone machinery. J Biol Chem 283:18473–18477

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Venable J, LaPointe P et al (2006) Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 127:803–815

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Liu Y, Huang L et al (2017) A CNS-permeable Hsp90 inhibitor rescues synaptic dysfunction and memory loss in APP-overexpressing Alzheimer’s mouse model via an HSF1-mediated mechanism. Mol Psychiatry 22:990–1001

    Article  CAS  PubMed  Google Scholar 

  • Winssinger N, Barluenga S (2007) Chemistry and biology of resorcylic acid lactones. Chem Commun 7:22–36

    Article  Google Scholar 

  • Woo JA, Liu T, Zhao X et al (2017) Enhanced tau pathology via RanBP9 and Hsp90/Hsc70 chaperone complexes. Hum Mol Genet 26:3973–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodford MR, Dunn DM, Ciciarelli JG, Beebe K, Neckers L, Mollapour M (2016) Targeting Hsp90 in non-cancerous maladies. Curr Top Med Chem 16:2792–2804

    Article  CAS  PubMed  Google Scholar 

  • Wu AH (2013) Biological and analytical variation of clinical biomarker testing: implications for biomarker-guided therapy. Curr Heart Fail Rep 10:434–440

    Article  CAS  PubMed  Google Scholar 

  • Yáñez-Mó M, Siljander PR-M, Andreu Z et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066

    Article  PubMed  Google Scholar 

  • Yim KH, Prince TL, Qu S et al (2016) Gambogic acid identifies an isoform-specific druggable pocket in the middle domain of Hsp90β. Proc Natl Acad Sci U S A 113:E4801–E4809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Z, Henry EC, Gasiewicz TA (2009) (−)-Epigallocatechin-3-gallate is a novel Hsp90 inhibitor. Biochemistry 48:336–345

    Article  CAS  PubMed  Google Scholar 

  • Yue Q, Stahl F, Plettenburg O, Kirschning A, Warnecke A, Zeilinger C (2018) The noncompetitive effect of Gambogic acid displaces fluorescence-labeled ATP but requires ATP for binding to Hsp90/HtpG. Biochemistry 57:2601–2605

    Article  CAS  PubMed  Google Scholar 

  • Zhang SY, Lu ZM, Luo XN et al (2013) Retrospective analysis of prognostic factors in 205 patients with laryngeal squamous cell carcinoma who underwent surgical treatment. PLoS One 8:e60157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang FZ, Ho DH, Wong RH (2018) Triptolide, a HSP90 middle domain inhibitor, induces apoptosis in triple manner. Oncotarget 9:22301–22315

    PubMed  PubMed Central  Google Scholar 

  • Zhao R, Davey M, Hsu Y-C et al (2005) Navigating the chaperone network. An integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120:715–727

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Zeilinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Warnecke, A., Kirschning, A., Landsberg, D., Zeilinger, C. (2019). Hsp90: A Target for Susceptibilities and Substitutions in Biotechnological and Medicinal Application. In: Asea, A., Kaur, P. (eds) Heat Shock Protein 90 in Human Diseases and Disorders. Heat Shock Proteins, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-23158-3_18

Download citation

Publish with us

Policies and ethics