Skip to main content

The ‘Complex World’ of the Hsp90 Co-chaperone R2TP

  • Chapter
  • First Online:
Heat Shock Protein 90 in Human Diseases and Disorders

Part of the book series: Heat Shock Proteins ((HESP,volume 19))

  • 577 Accesses

Abstract

The Hsp90 co-chaperone R2TP consists of the AAA+ ATPases, RUVBL1 (Rvb1p in yeast) and RUVBL2 (Rvb2p in yeast), which together make up a heterohexameric ring, in complex with PIH1D1 (Pih1p in yeast) and RPAP3 (Tah1p in yeast). R2TP is involved in the activation of client proteins, such as phosphatidylinositol 3 kinase-related kinases, including mTORC1, ATM, DNA-PK, SMG and ATR/ATRIP, or in the assembly of protein complexes including those of RNA polymerase and snoRNPs, amongst others. In other cases, the role of the TP component (RPAP3-PIH1D1) of R2TP, and consequently Hsp90, is controversial. None-the-less, the extensive role of RUVBL1-RUVBL2 complex in cells, either with or without Hsp90, means that dysfunction of these AAA+ ATPases, Hsp90 or components of the complexes they assemble leads to diseases such as cancer, ciliary dyskinesia and in the case of defects in ATM to ataxia telangiectasia-like syndrome. Recent advances in determining the structure of the R2TP complex has led to an increased understanding of the assembly and function of the R2TP complex. In this review we discuss the current structural advances in determining the architecture of the R2TP complex and the advances made in understanding its active state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EM:

Electron microscopy

Hsp90:

Heat shock protein 90

R2:

RUVBL1-RUVBL2 complex

R2TP:

RUVBL1 RUVBL2-RPAP3-PIH1D1 or Rvb1p-Rvb2p-Pih1p-Tah1p complex

References

  • Ammelburg M, Frickey T, Lupas AN (2006) Classification of AAA+ proteins. J Struct Biol 156:2–11

    Article  CAS  PubMed  Google Scholar 

  • Aramayo RJ, Willhoft O, Ayala R, Bythell-Douglas R, Wigley DB, Zhang X (2018) Cryo-EM structures of the human INO80 chromatin-remodeling complex. Nat Struct Mol Biol 25:37–44

    Article  CAS  PubMed  Google Scholar 

  • Bizarro J, Charron C, Boulon S et al (2014) Proteomic and 3D structure analyses highlight the C/D box snoRNP assembly mechanism and its control. J Cell Biol 207:463–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botos I, Melnikov EE, Cherry S et al (2004) Crystal structure of the AAA+ alpha domain of E. coli Lon protease at 1.9A resolution. J Struct Biol 146:113–122

    Article  CAS  PubMed  Google Scholar 

  • Boulon S, Pradet-Balade B, Verheggen C et al (2010) HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. Mol Cell 39:912–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cloutier P, Coulombe B (2010) New insights into the biogenesis of nuclear RNA polymerases? Biochem Cell Biol 88:211–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cloutier P, Al-Khoury R, Lavallee-Adam M et al (2009) High-resolution mapping of the protein interaction network for the human transcription machinery and affinity purification of RNA polymerase II-associated complexes. Methods 48:381–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cloutier P, Poitras C, Durand M et al (2017) R2TP/Prefoldin-like component RUVBL1/RUVBL2 directly interacts with ZNHIT2 to regulate assembly of U5 small nuclear ribonucleoprotein. Nat Commun 8:15615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckert K, Saliou JM, Monlezun L et al (2010) The Pih1-Tah1 cochaperone complex inhibits Hsp90 molecular chaperone ATPase activity. J Biol Chem 285:31304–31312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eustermann S, Schall K, Kostrewa D et al (2018) Structural basis for ATP-dependent chromatin remodelling by the INO80 complex. Nature 556:386–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ewens CA, Su M, Zhao L, Nano N, Houry WA, Southworth DR (2016) Architecture and nucleotide-dependent conformational changes of the Rvb1-Rvb2 AAA+ complex revealed by cryoelectron microscopy. Structure 24:657–666

    Article  CAS  PubMed  Google Scholar 

  • Gorynia S, Bandeiras TM, Pinho FG et al (2011) Structural and functional insights into a dodecameric molecular machine – the RuvBL1/RuvBL2 complex. J Struct Biol 176:279–291

    Article  CAS  PubMed  Google Scholar 

  • Gribun A, Cheung KL, Huen J, Ortega J, Houry WA (2008) Yeast Rvb1 and Rvb2 are ATP-dependent DNA helicases that form a heterohexameric complex. J Mol Biol 376:1320–1333

    Article  CAS  PubMed  Google Scholar 

  • Grigoletto A, Lestienne P, Rosenbaum J (2011) The multifaceted proteins Reptin and Pontin as major players in cancer. Biochim Biophys Acta 1815:147–157

    CAS  PubMed  Google Scholar 

  • Gross M, Hessefort S (1996) Purification and characterisation of a 66-kDa protein from rabbit reticulocyte lysate which promotes the recycling of hsp70. J Biol Chem 271:16833–16841

    Article  CAS  PubMed  Google Scholar 

  • Hartill VL, van de Hoek G, Patel MP et al (2018) DNAAF1 links heart laterality with the AAA+ ATPase RUVBL1 and ciliary intraflagellar transport. Hum Mol Genet 27:529–545

    Article  CAS  PubMed  Google Scholar 

  • Horejsi Z, Takai H, Adelman CA et al (2010) CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability. Mol Cell 39:839–850

    Article  CAS  PubMed  Google Scholar 

  • Horejsi Z, Stach L, Flower TG et al (2014) Phosphorylation-dependent PIH1D1 interactions define substrate specificity of the R2TP cochaperone complex. Cell Rep 7:19–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber O, Menard L, Haurie V, Nicou A, Taras D, Rosenbaum J (2008) Pontin and reptin, two related ATPases with multiple roles in cancer. Cancer Res 68:6873–6876

    Article  CAS  PubMed  Google Scholar 

  • Hurov KE, Cotta-Ramusino C, Elledge SJ (2010) A genetic screen identifies the triple T complex required for DNA damage signaling and ATM and ATR stability. Genes Dev 24:1939–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itsuki Y, Saeki M, Nakahara H et al (2008) Molecular cloning of novel Monad binding protein containing tetratricopeptide repeat domains. FEBS Lett 582:2365–2370

    Article  CAS  PubMed  Google Scholar 

  • Izumi N, Yamashita A, Hirano H, Ohno S (2012) Heat shock protein 90 regulates phosphatidylinositol 3-kinase-related protein kinase family proteins together with the RUVBL1/2 and Tel2-containing co-factor complex. Cancer Sci 103:50–57

    Article  CAS  PubMed  Google Scholar 

  • Jeganathan A, Leong V, Zhao L et al (2015) Yeast rvb1 and rvb2 proteins oligomerize as a conformationally variable dodecamer with low frequency. J Mol Biol 427:1875–1886

    Article  CAS  PubMed  Google Scholar 

  • Jha S, Dutta A (2009) RVB1/RVB2: running rings around molecular biology. Mol Cell 34:521–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson BD, Schumacher RJ, Ross ED, Toft DO (1998) Hop modulates hsp70/hsp90 interactions in protein folding. J Biol Chem 273:3679–3686

    Article  CAS  PubMed  Google Scholar 

  • Jonsson ZO, Jha S, Wohlschlegel JA, Dutta A (2004) Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex. Mol Cell 16:465–477

    Article  CAS  PubMed  Google Scholar 

  • Kabani M, Beckerich JM, Brodsky JL (2002) Nucleotide exchange factor for the yeast Hsp70 molecular chaperone Ssa1p. Mol Cell Biol 22:4677–4689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakihara Y, Houry WA (2012) The R2TP complex: discovery and functions. Biochim Biophys Acta 1823:101–107

    Article  CAS  PubMed  Google Scholar 

  • Kim SG, Hoffman GR, Poulogiannis G et al (2013) Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol Cell 49:172–185

    Article  CAS  PubMed  Google Scholar 

  • Lakomek K, Stoehr G, Tosi A, Schmailzl M, Hopfner KP (2015) Structural basis for dodecameric assembly states and conformational plasticity of the full-length AAA+ ATPases Rvb1 . Rvb2. Structure 23:483–495

    Article  CAS  PubMed  Google Scholar 

  • Lakshminarasimhan M, Boanca G, Banks CA et al (2016) Proteomic and genomic analyses of the Rvb1 and Rvb2 interaction network upon deletion of R2TP complex components. Mol Cell Proteomics 15:960–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Perrote A, Munoz-Hernandez H, Gil D, Llorca O (2012) Conformational transitions regulate the exposure of a DNA-binding domain in the RuvBL1-RuvBL2 complex. Nucleic Acids Res 40:11086–11099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malinova A, Cvackova Z, Mateju D et al (2017) Assembly of the U5 snRNP component PRPF8 is controlled by the HSP90/R2TP chaperones. J Cell Biol 216:1579–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mannoor K, Liao J, Jiang F (2012) Small nucleolar RNAs in cancer. Biochim Biophys Acta 1826:121–128

    CAS  PubMed  Google Scholar 

  • Mao YQ, Houry WA (2017) The role of Pontin and Reptin in cellular physiology and cancer etiology. Front Mol Biosci 4:58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martino F, Pal M, Munoz-Hernandez H et al (2018) RPAP3 provides a flexible scaffold for coupling HSP90 to the human R2TP co-chaperone complex. Nat Commun 9:1501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matias PM, Gorynia S, Donner P, Carrondo MA (2006) Crystal structure of the human AAA+ protein RuvBL1. J Biol Chem 281:38918–38929

    Article  CAS  PubMed  Google Scholar 

  • Maurizy C, Quinternet M, Abel Y et al (2018) The RPAP3-Cterminal domain identifies R2TP-like quaternary chaperones. Nat Commun 9:2093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McKeegan KS, Debieux CM, Boulon S, Bertrand E, Watkins NJ (2007) A dynamic scaffold of pre-snoRNP factors facilitates human box C/D snoRNP assembly. Mol Cell Biol 27:6782–6793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao C, Jiang Q, Li H et al (2016) Mutations in the motile cilia gene DNAAF1 are associated with neural tube defects in humans. G3 (Bethesda) 6:3307–3316

    Article  CAS  Google Scholar 

  • Mikesch JH, Hartmann W, Angenendt L et al (2018) AAA+ ATPases Reptin and Pontin as potential diagnostic and prognostic biomarkers in salivary gland cancer – a short report. Cell Oncol (Dordr) 41:455–462

    Article  CAS  Google Scholar 

  • Millson SH, Vaughan CK, Zhai C et al (2008) Chaperone ligand-discrimination by the TPR-domain protein Tah1. Biochem J 413:261–268

    Article  CAS  PubMed  Google Scholar 

  • Mita P, Savas JN, Ha S, Djouder N, Yates JR 3rd, Logan SK (2013) Analysis of URI nuclear interaction with RPB5 and components of the R2TP/prefoldin-like complex. PLoS One 8:e63879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan RM, Pal M, Roe SM, Pearl LH, Prodromou C (2015) Tah1 helix-swap dimerization prevents mixed Hsp90 co-chaperone complexes. Acta Crystallogr D Biol Crystallogr 71:1197–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nallar SC, Kalvakolanu DV (2013) Regulation of snoRNAs in cancer: close encounters with interferon. J Interf Cytokine Res 33:189–198

    Article  CAS  Google Scholar 

  • Nano N, Houry WA (2013) Chaperone-like activity of the AAA+ proteins Rvb1 and Rvb2 in the assembly of various complexes. Philos Trans R Soc Lond Ser B Biol Sci 368:20110399

    Article  CAS  Google Scholar 

  • Nguyen VQ, Ranjan A, Stengel F et al (2013) Molecular architecture of the ATP-dependent chromatin-remodeling complex SWR1. Cell 154:1220–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niewiarowski A, Bradley AS, Gor J, McKay AR, Perkins SJ, Tsaneva IR (2010) Oligomeric assembly and interactions within the human RuvB-like RuvBL1 and RuvBL2 complexes. Biochem J 429:113–125

    Article  CAS  PubMed  Google Scholar 

  • Olcese C, Patel MP, Shoemark A et al (2017) X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3. Nat Commun 8:14279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal M, Morgan M, Phelps SE et al (2014) Structural basis for phosphorylation-dependent recruitment of Tel2 to Hsp90 by Pih1. Structure 22:805–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polier S, Samant RS, Clarke PA, Workman P, Prodromou C, Pearl LH (2013) ATP-competitive inhibitors block protein kinase recruitment to the Hsp90-Cdc37 system. Nat Chem Biol 9:307–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prodromou C (2012) The ‘active life’ of Hsp90 complexes. Biochim Biophys Acta 1823:614–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prodromou C (2016) Mechanisms of Hsp90 regulation. Biochem J 473:2439–2452

    Article  CAS  PubMed  Google Scholar 

  • Prodromou C, Morgan RML (2016) “Tuning” the ATPase activity of Hsp90. Adv Biochem Health D 14:469–490

    Google Scholar 

  • Prodromou C, Siligardi G, O’Brien R et al (1999) Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. EMBO J 18:754–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puri T, Wendler P, Sigala B, Saibil H, Tsaneva IR (2007) Dodecameric structure and ATPase activity of the human TIP48/TIP49 complex. J Mol Biol 366:179–192

    Article  CAS  PubMed  Google Scholar 

  • Quinternet M, Rothe B, Barbier M et al (2015) Structure/function analysis of protein-protein interactions developed by the yeast Pih1 platform protein and its Partners in box C/D snoRNP assembly. J Mol Biol 427:2816–2839

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Calzada A, Pal M, Munoz-Hernandez H et al (2017) The structure of the R2TP complex defines a platform for recruiting diverse client proteins to the HSP90 molecular chaperone system. Structure 25:1145–52 e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roe SM, Ali MM, Meyer P et al (2004) The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Cell 116:87–98

    Article  CAS  PubMed  Google Scholar 

  • Rothe B, Saliou JM, Quinternet M et al (2014) Protein Hit1, a novel box C/D snoRNP assembly factor, controls cellular concentration of the scaffolding protein Rsa1 by direct interaction. Nucleic Acids Res 42:10731–10747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sardiu ME, Cai Y, Jin J et al (2008) Probabilistic assembly of human protein interaction networks from label-free quantitative proteomics. Proc Natl Acad Sci U S A 105:1454–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegers K, Waldmann T, Leroux MR et al (1999) Compartmentation of protein folding in vivo: sequestration of non-native polypeptide by the chaperonin-GimC system. EMBO J 18:75–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siligardi G, Panaretou B, Meyer P et al (2002) Regulation of Hsp90 ATPase activity by the co-chaperone Cdc37p/p50cdc37. J Biol Chem 277:20151–20159

    Article  CAS  PubMed  Google Scholar 

  • Takai H, Xie Y, de Lange T, Pavletich NP (2010) Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes. Genes Dev 24:2019–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarkar A, Loges NT, Slagle CE et al (2013) DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat Genet 45:995–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor AM, Groom A, Byrd PJ (2004) Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis. DNA Repair (Amst) 3:1219–1225

    Article  CAS  Google Scholar 

  • Vainberg IE, Lewis SA, Rommelaere H et al (1998) Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93:863–873

    Article  CAS  PubMed  Google Scholar 

  • Venteicher AS, Meng Z, Mason PJ, Veenstra TD, Artandi SE (2008) Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly. Cell 132:945–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verheggen C, Pradet-Balade B, Bertrand E (2015) SnoRNPs, ZNHIT proteins and the R2TP pathway. Oncotarget 6:41399–41400

    Article  PubMed  PubMed Central  Google Scholar 

  • von Morgen P, Horejsi Z, Macurek L (2015) Substrate recognition and function of the R2TP complex in response to cellular stress. Front Genet 6:69

    Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha-subunits and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegele H, Haslbeck M, Reinstein J, Buchner J (2003) Sti1 is a novel activator of the Ssa proteins. J Biol Chem 278:25970–25976

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Saeki M, Egusa H et al (2013) RPAP3 splicing variant isoform 1 interacts with PIH1D1 to compose R2TP complex for cell survival. Biochem Biophys Res Commun 430:320–324

    Article  CAS  PubMed  Google Scholar 

  • Zaarur N, Xu X, Lestienne P et al (2015) RuvbL1 and RuvbL2 enhance aggresome formation and disaggregate amyloid fibrils. EMBO J 34:2363–2382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Wigley DB (2008) The ‘glutamate switch’ provides a link between ATPase activity and ligand binding in AAA+ proteins. Nat Struct Mol Biol 15:1223–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Ren J, Yan L et al (2015) Cytoplasmic expression of pontin in renal cell carcinoma correlates with tumor invasion, metastasis and patients’ survival. PLoS One 10:e0118659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao R, Davey M, Hsu YC et al (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120:715–727

    Article  CAS  PubMed  Google Scholar 

  • Zur Lage P, Stefanopoulou P, Styczynska-Soczka K et al (2018) Ciliary dynein motor preassembly is regulated by Wdr92 in association with HSP90 co-chaperone, R2TP. J Cell Biol 217:2583–2598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chrisostomos Prodromou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prodromou, C. (2019). The ‘Complex World’ of the Hsp90 Co-chaperone R2TP. In: Asea, A., Kaur, P. (eds) Heat Shock Protein 90 in Human Diseases and Disorders. Heat Shock Proteins, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-23158-3_15

Download citation

Publish with us

Policies and ethics