Skip to main content

Hsp90 and Its Role in Heme-Maturation of Client Proteins: Implications for Human Diseases

  • Chapter
  • First Online:
Book cover Heat Shock Protein 90 in Human Diseases and Disorders

Part of the book series: Heat Shock Proteins ((HESP,volume 19))

Abstract

Hemeproteins are essential for life and heme insertion is an essential step in their maturation. Maturation of hemeprotein requires that they incorporate heme and become active, but knowledge of this essential cellular process remains incomplete. However recent studies on chaperon Hsp90 has revealed that it drives functional heme insertion in vital hemeproteins like inducible nitric oxide synthase (iNOS), soluble guanylate cyclase (sGC) and hemoglobin (Hb). In all three cases Hsp90 interacts with the heme-free or apo-protein and then drives the heme insertion by an ATP dependent process before dissociating from the heme-replete proteins. Given the diverse role of chaperon Hsp90, and in particular to it being a major therapeutic target in drug discovery programs these findings add up to Hsp90’s repertoire of being a druggable target and opens up more avenues in regulating growth of diseased cells in those pathologic conditions where these hemeproteins are dysfunctional.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AHSP:

Alpha hemoglobin stabilizing protein

AIF:

Apoptosis-inducing factor

Apaf-1:

Apoptotic protease activating factor 1

Ask-1:

Apoptosis signal-regulating kinase 1

ATP:

Adenosine triphosphate

cGMP:

Cyclic guanosine monophosphate

ECM:

Extracellular matrix

FLVCRb:

Feline leukemia virus subgroup c receptor b

Hb:

Hemoglobin

HDM:

House dust mite

Her-2:

Human epidermal growth factor receptor 2

Hip:

hsp70-interacting protein

H-NOX:

Heme nitric oxide/oxygen

Hop:

hsp70/hsp90 organizing protein

Hsp90:

Heat shock protein 90

iNOS:

Inducible nitric oxide synthase

IPF:

Idiopathic pulmonary fibrosis

MMPs:

Matrix metalloproteinases

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NOX:

NADPH oxidase

per2:

Period circadian regulator 2

ROS:

Reactive oxygen species

sGC:

Soluble guanylate cyclase

TGF-β1:

Transforming growth factor-β1

VEGF:

Vascular endothelial growth factor

References

  • Aguilà M, Cheetham ME (2016) Hsp90 as a potential therapeutic target in retinal disease. Adv Exp Med Biol 854:161–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali MM, Roe SM, Vaughan CK et al (2006) Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440:1013–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billecke SS, Draganov DI, Morishima Y et al (2004) The role of hsp90 in heme-dependent activation of apo-neuronal nitric-oxide synthase. J Biol Chem 279:30252–30258

    Article  CAS  PubMed  Google Scholar 

  • Bonniaud P, Bellaye PS, Burgy O, Kolb M (2017) Heat shock protein: a hot topic in idiopathic pulmonary fibrosis. Eur Respir J 49:1602152

    Article  PubMed  Google Scholar 

  • Bryan NS, Bian K, Murad F (2009) Discovery of the nitric oxide signaling pathway and targets for drug development. Front Biosci 14:1–18

    Article  CAS  Google Scholar 

  • Byon JC, Chen J, Doty RT, Abkowitz JL (2013) FLVCR is necessary for erythroid maturation, may contribute to platelet maturation, but is dispensable for normal hematopoietic stem cell function. Blood 122:2903–2910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases—the role of oxidant stress. Circ Res 87:840–844

    Article  CAS  PubMed  Google Scholar 

  • Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR (2006) Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 31:164–172

    CAS  PubMed  Google Scholar 

  • Chen B, Piel WH, Gui L, Bruford E, Monteiro A (2005) The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics 86:627–637

    Article  CAS  PubMed  Google Scholar 

  • Chen Z et al (2010) Inhibition of ALK, PI3K/MEK, and HSP90 in murine lung adenocarcinoma induced by EML4-ALK fusion oncogene. Cancer Res 70:9827–9836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Pandey D, Chadli A, Catravas JD, Chen T, Fulton DJ (2011) Hsp90 regulates NADPH oxidase activity and is necessary for superoxide but not hydrogen peroxide production. Antioxid Redox Signal 14:2107–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiosis G, Tao H (2006) Purine-scaffold Hsp90 inhibitors. IDrugs 9:778–782

    CAS  PubMed  Google Scholar 

  • Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10:86–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correia AL, Mori H, Chen EI, Schmitt FC, Bissell MJ (2013) The hemopexin domain of MMP3 is responsible for mammary epithelial invasion and morphogenesis through extracellular interaction with HSP90beta. Genes Dev 27:805–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crane BR, Arvai AS, Ghosh DK et al (1998) Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science 279:2121–2126

    Article  CAS  PubMed  Google Scholar 

  • Csermely P, Schnaider T, Soti C, Prohaszka Z, Nardai G (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79:129–168

    CAS  PubMed  Google Scholar 

  • Dimitropoulou C, Snead C, Gallops J, Catravas JD (2010) Heat shock protein 90 inhibitors reduce airway inflammation in a mouse model of allergic asthma. FASEB J 24(Suppl 1)

    Google Scholar 

  • Do K, Speranza G, Chang LC et al (2015) Phase I study of the heat shock protein 90 (Hsp90) inhibitor onalespib (AT13387) administered on a daily for 2 consecutive days per week dosing schedule in patients with advanced solid tumors. Investig New Drugs 33:921–930

    Article  CAS  Google Scholar 

  • Dong HM, Le YQ, Wang YH et al (2017) Extracellular heat shock protein 90α mediates HDM-induced bronchial epithelial barrier dysfunction by activating RhoA/MLC signaling. Respir Res 18:111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumont ME, Cardillo TS, Hayes MK, Sherman F (1991) Role of cytochrome c heme lyase in mitochondrial import and accumulation of cytochrome c in Saccharomyces cerevisiae. Mol Cell Biol 11:5487–5496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eccles SA, Massey A, Raynaud FI et al (2008) NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res. 2008 68:2850–2860

    CAS  PubMed  Google Scholar 

  • Elpek GO, Karaveli S, Simsek T, Keles N, Aksoy NH (2003) Expression of heat-shock proteins hsp27, hsp70 and hsp90 in malignant epithelial tumour of the ovaries. APMIS 111:523–530

    Article  CAS  PubMed  Google Scholar 

  • Fadden P, Huang KH, Veal JM et al (2010) Application of chemoproteomics to drug discovery: identification of a clinical candidate targeting hsp90. Chem Biol 17:686–694

    Article  CAS  PubMed  Google Scholar 

  • Faou P, Hoogenraad NJ (2012) Tom34: a cytosolic cochaperone of the Hsp90/Hsp70 protein complex involved in mitochondrial protein import. Biochim Biophys Acta 1823:348–357

    Article  CAS  PubMed  Google Scholar 

  • Feng L, Zhou S, Gu L et al (2005) Structure of oxidized alpha-haemoglobin bound to AHSP reveals a protective mechanism for haem. Nature 435:697–701

    Article  CAS  PubMed  Google Scholar 

  • Fleming MD, Hamza I (2012) Mitochondrial heme: an exit strategy at last. J Clin Invest 122:4328–4330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Froese AR, Shimbori C, Bellaye PS et al (2016) Stretch-induced activation of transforming growth factor-β1 in pulmonary fibrosis. Am J Respir Crit Care Med 194:84–96

    Article  CAS  PubMed  Google Scholar 

  • Fuhrmann-Stroissnigg H, Ling YY, Zhao J et al (2017) Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun 8:422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 9:447–464

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Erzurum SC (2011) Nitric oxide metabolism in asthma pathophysiology. Biochim Biophys Acta 1810:1008–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh A, Stuehr DJ (2012) Soluble guanylyl cyclase requires heat shock protein 90 for heme insertion during maturation of the NO-active enzyme. Proc Natl Acad Sci U S A 109:12998–13003

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh A, Chawla-Sarkar M, Stuehr DJ (2011) Hsp90 interacts with inducible NO synthase client protein in its heme-free state and then drives heme insertion by an ATP-dependent process. FASEB J 25:2049–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh A, Stasch JP, Papapetropoulos A, Stuehr DJ (2014) Nitric oxide and heat shock protein 90 activate soluble guanylate cyclase by driving rapid change in its subunit interactions and heme content. J Biol Chem 289:15259–15271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh A, Koziol-White CJ, Asosingh K et al (2016) Soluble guanylate cyclase as an alternative target for bronchodilator therapy in asthma. Proc Natl Acad Sci U S A 113:E2355–E2362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh A, Garee G, Sweeny EA, Nakamura Y, Stuehr DJ (2018) Hsp90 chaperones hemoglobin maturation in erythroid and non-erythroid cells. Proc Natl Acad Sci U S A 115:E1117–E1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Monterrey I, Sala M, Musella S, Campiglia P (2012) Heat shock protein 90 inhibitors as therapeutic agents. Recent Pat Anticancer Drug Discov 7:313–336

    Article  CAS  PubMed  Google Scholar 

  • Griendling KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86:494–501

    Article  CAS  PubMed  Google Scholar 

  • Guo FH, De Raeve HR, Rice TW, Stuehr DJ, Thunnissen FB, Erzurum SC (1995) Continuous nitric oxide synthesis by inducible nitric oxide synthase in normal human airway epithelium in vivo. Proc Natl Acad Sci U S A 92:7809–7813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  CAS  PubMed  Google Scholar 

  • Hopkins RB, Burke N, Fell C, Dion G, Kolb M (2016) Epidemiology and survival of idiopathic pulmonary fibrosis from national data in Canada. Eur Respir J 48:187–195

    Article  PubMed  Google Scholar 

  • Ignarro LJ, Adams JB, Horwitz PM, Wood KS (1986) Activation of soluble guanylate cyclase by NO-hemoproteins involves NO-heme exchange. Comparison of heme-containing and heme-deficient enzyme forms. J Biol Chem 261:4997–5002

    CAS  PubMed  Google Scholar 

  • Intapad S, Dimitropoulou C, Snead C, Piyachaturawat P, Catravas JD (2012) Regulation of asthmatic airway relaxation by estrogen and heat shock protein 90. J Cell Physiol 227:3036–3043

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki M, Saito H, Yamamoto M, Korach KS, Hirogome T, Sugano H (1989) Purification of heat shock protein 90 from calf uterus and rat liver and characterization of the highly hydrophobic region. Biochim Biophys Acta 992:1–8

    Article  CAS  PubMed  Google Scholar 

  • Jackson SE, Queitsch C, Toft D (2004) Hsp90: from structure to phenotype. Nat Struct Mol Biol 11:1152–1155

    Article  CAS  PubMed  Google Scholar 

  • Kamal A, Thao L, Sensintaffar J et al (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425:407–410

    Article  CAS  PubMed  Google Scholar 

  • Kihm AJ, Kong Y, Hong W et al (2002) An abundant erythroid protein that stabilizes free alpha-haemoglobin. Nature 417:758–763

    Article  CAS  PubMed  Google Scholar 

  • Kim YS (2009) Update on Hsp90 inhibitors in clinical trial. Curr Top Med Chem 9:1479–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krukenberg KA, Street TO, Lavery LA, Agard DA (2011) Conformational dynamics of the molecular chaperone Hsp90. Q Rev Biophys 44:229–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagarrigue F, Dupuis-Coronas S, Ramel D et al (2010) Matrix metalloproteinase-9 is upregulated in nucleophosmin-anaplastic lymphoma kinase-positive anaplastic lymphomas and activated at the cell surface by the chaperone heat shock protein 90 to promote cell invasion. Cancer Res 70:6978–6987

    Article  CAS  PubMed  Google Scholar 

  • Lazarow PB, de Duve C (1973) The synthesis and turnover of rat liver peroxisomes. V. Intracellular pathway of catalase synthesis. J Cell Biol 59:507–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebret T, Watson RW, Molinié V et al (2003) Heat shock proteins HSP27, HSP60, HSP70, and HSP90: expression in bladder carcinoma. Cancer 98:970–977

    Article  CAS  PubMed  Google Scholar 

  • Li J, Buchner J (2013) Structure, function and regulation of the hsp90 machinery. Biom J 36:106–117

    Google Scholar 

  • Liu X, Yu Y, Hu C, Zhang W, Lu Y, Wang J (2012) Significant increase of oxidase activity through the genetic incorporation of a tyrosine-histidine cross-link in a myoglobin model of heme-copper oxidase. Angew Chem Int Ed Eng 51:4312–4316

    Article  CAS  Google Scholar 

  • Lu Y, Yeung N, Sieracki N, Marshall NM (2009) Design of functional metalloproteins. Nature 460:855–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo W, Sun W, Taldone T, Rodina A, Chiosis G (2010) Heat shock protein 90 in neurodegenerative diseases. Mol Neurodegener 5:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makhnevych T, Houry WA (2012) The role of Hsp90 in protein complex assembly. Biochim Biophys Acta 1823:674–682

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Baskaran P, Ma X et al (2010) Structure of cinaciguat (BAY 58-2667) bound to Nostoc H-NOX domain reveals insights into heme-mimetic activation of the soluble guanylyl cyclase. J Biol Chem 285:22651–22657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy MM, Pick E, Kluger Y et al (2008) HSP90 as a marker of progression in melanoma. Ann Oncol 19:590–594

    Article  CAS  PubMed  Google Scholar 

  • McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J (2007) Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131:121–135

    Article  CAS  PubMed  Google Scholar 

  • Miyata Y, Nakamoto H, Neckers L (2013) The therapeutic target Hsp90 and cancer hallmarks. Curr Pharm Des 19:347–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modi S, Stopeck A, Linden H et al (2011) HSP90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clin Cancer Res 17:5132–5139

    Article  CAS  PubMed  Google Scholar 

  • Mora AL, Rojas M, Pardo A, Selman M (2017) Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nat Rev Drug Discov 16:755–772

    Article  CAS  PubMed  Google Scholar 

  • Murad F (2006) Shattuck Lecture. Nitric oxide and cyclic GMP in cell signaling and drug development. N Engl J Med 355:2003–2011

    Article  CAS  PubMed  Google Scholar 

  • Nauseef WM, McCormick S, Yi H (1992) Roles of heme insertion and the mannose-6-phosphate receptor in processing of the human myeloid lysosomal enzyme, myeloperoxidase. Blood 80:2622–2633

    Article  CAS  PubMed  Google Scholar 

  • Neckers L (2002) Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 8:S55–S61

    Article  CAS  PubMed  Google Scholar 

  • Neckers L, Workman P (2012) Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 18:64–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM (2000) Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 18:1135–1149

    Article  CAS  PubMed  Google Scholar 

  • Nimmanapalli R, O’Bryan E, Bhalla K (2001) Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl-positive human leukemic blasts. Cancer Res 61:1799–1804

    CAS  PubMed  Google Scholar 

  • Overgaard D, Kaldan G, Marsaa K, Nielsen TL, Shaker SB, Egerod I (2016) The lived experience with idiopathic pulmonary fibrosis: a qualitative study. Eur Respir J 47:1472–1480

    Article  PubMed  Google Scholar 

  • Pandey P, Saleh A, Nakazawa A et al (2000) Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J 19:4310–4322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pankey EA, Bhartiya M, Badejo AM Jr (2011) Pulmonary and systemic vasodilator responses to the soluble guanylyl cyclase activator, BAY 60-2770, are not dependent on endogenous nitric oxide or reduced heme. Am J Physiol Heart Circ Physiol 300:H792–H802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paoli M, Marles-Wright J, Smith A (2002) Structure-function relationships in heme-proteins. DNA Cell Biol. 2002 21:271–280

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Kostic M, Dyson HJ (2011) Dynamic interaction of Hsp90 with its client protein p53. J Mol Biol 411:158–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pezzulo A, Tudas RA, Stewart CG et al (2018) HSP90 inhibition reverts IL13- and IL17-induced goblet cell metaplasia in human airway epithelia. Am J Respir Crit Care Med 197:A1296

    Google Scholar 

  • Pillai RN, Ramalingam SS (2012) Hsp90 inhibitors. J Thorac Oncol 7:S407–S408

    Article  PubMed  Google Scholar 

  • Pockley AG, Multhoff G (2008) Cell stress proteins in extracellular fluids: friend or foe? Novartis Found Symp 291:86–95

    Article  CAS  PubMed  Google Scholar 

  • Pockley AG, Muthana M, Calderwood SK (2008) The dual immunoregulatory roles of stress proteins. Trends Biochem Sci 33:71–79

    Article  CAS  PubMed  Google Scholar 

  • Ponka P (1999) Cell biology of heme. Am J Med Sci 318:241–256

    Article  CAS  PubMed  Google Scholar 

  • Poulos TL (2014) Heme enzyme structure and function. Chem Rev 114:3919–3962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prodromou C (2012) The ‘active life’ of Hsp90 complexes. Biochim Biophys Acta 1823:614–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratajczak T, Ward BK, Walsh JP, Cluning C (2015) Hsp90 as a therapeutic target in endocrinology: current evidence. Res Rep Endocr Disord 5:141–155

    Google Scholar 

  • Ratzke C, Berkemeier F, Hugel T (2012) Heat shock protein 90’s mechanochemical cycle is dominated by thermal fluctuations. Proc Natl Acad Sci U S A 109:161–166

    Article  PubMed  Google Scholar 

  • Richard-Fogal CL, Frawley ER, Bonner ER, Zhu H, San Francisco B, Kranz RG (2009) A conserved haem redox and trafficking pathway for cofactor attachment. EMBO J 28:2349–2359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandner P, Berger P, Zenzmaier C (2017) The potential of sGC modulators for the treatment of age-related fibrosis: a mini-review. Gerontology 63:216–227

    Article  CAS  PubMed  Google Scholar 

  • Severance S, Hamza I (2009) Trafficking of heme and porphyrins in metazoa. Chem Rev 109:4596–4616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimamura T, Shapiro GI (2008) Heat shock protein 90 inhibition in lung cancer. J Thorac Oncol 3:S152–S159

    Article  PubMed  PubMed Central  Google Scholar 

  • Sibinska Z, Tian X, Korfei M et al (2017) Amplified canonical transforming growth factor-β signalling via heat shock protein 90 in pulmonary fibrosis. Eur Respir J 49:1501941

    Article  PubMed  Google Scholar 

  • Sims JD, McCready J, Jay DG (2011) Extracellular heat shock protein (Hsp)70 and Hsp90α assist in matrix metalloproteinase-2 activation and breast cancer cell migration and invasion. PLoS One 6:e18848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AT, Veitch NC (1998) Substrate binding and catalysis in heme peroxidases. Curr Opin Chem Biol 2:269–278

    Article  CAS  PubMed  Google Scholar 

  • Socinski MA, Goldman J, El-Hariry I et al (2013) A multicenter phase II study of ganetespib monotherapy in patients with genotypically defined advanced non-small cell lung cancer. Clin Cancer Res 19:3068–3077

    Article  CAS  PubMed  Google Scholar 

  • Song X, Wang X, Zhuo W et al (2010) The regulatory mechanism of extracellular Hsp90{alpha} on matrix metalloproteinase-2 processing and tumor angiogenesis. J Biol Chem 285:40039–40049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sontake V, Wang Y, Kasam RK et al (2017) Hsp90 regulation of fibroblast activation in pulmonary fibrosis. JCI Insight 2:e91454

    Article  PubMed  PubMed Central  Google Scholar 

  • Southworth DR, Agard DA (2011) Client-loading conformation of the Hsp90 molecular chaperone revealed in the cryo-EM structure of the human Hsp90: Hop complex. Mol Cell 42:771–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiro TG, Soldatova AV, Balakrishnan G (2013) CO, NO and O2 as vibrational probes of heme protein interactions. Coord Chem Rev 257:511–527

    Article  CAS  PubMed  Google Scholar 

  • Stasch JP, Pacher P, Evgenov OV (2011) Soluble guanylate cyclase as an emerging therapeutic target in cardiopulmonary disease. Circulation 123:2263–2273

    Article  PubMed  PubMed Central  Google Scholar 

  • Steiner H, Kispal G, Zollner A, Haid A, Neupert W, Lill R (1996) Heme binding to a conserved Cys-Pro-Val motif is crucial for the catalytic function of mitochondrial heme lyases. J Biol Chem 271:32605–32611

    Article  CAS  PubMed  Google Scholar 

  • Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528

    CAS  PubMed  Google Scholar 

  • Taketani S (2005) Aquisition, mobilization and utilization of cellular iron and heme: endless findings and growing evidence of tight regulation. Tohoku J Exp Med 205:297–318

    Article  CAS  PubMed  Google Scholar 

  • Taldone T, Ochiana SO, Patel PD, Chiosis G (2014) Selective targeting of the stress chaperome as a therapeutic strategy. Trends Pharmacol Sci 35:592–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor BL, Zhulin IB (1999) PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63:479–506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tóth ME, Gombos I, Sántha M (2015) Heat shock proteins and their role in human diseases. Acta Biol Szeged 59:121–141

    Google Scholar 

  • Trepel J, Mollapour M, Giaccone G, Neckers L (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10:537–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsiftsoglou AS, Tsamadou AI, Papadopoulou LC (2006) Heme as key regulator of major mammalian cellular functions: molecular, cellular, and pharmacological aspects. Pharmacol Ther 111:327–345

    Article  CAS  PubMed  Google Scholar 

  • Verbeke P, Fonager J, Clark BF, Rattan SI (2001) Heat shock response and ageing: mechanisms and applications. Cell Biol Int 25:845–857

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Dumont ME, Sherman F (1996) Sequence requirements for mitochondrial import of yeast cytochrome c. J Biol Chem 271:6594–6604

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Song X, Zhuo W et al (2009) The regulatory mechanism of Hsp90alpha secretion and its function in tumor malignancy. Proc Natl Acad Sci U S A 106:21288–21293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss MJ, dos Santos CO (2009) Chaperoning erythropoiesis. Blood 113:2136–2144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West AR, Oates PS (2008) Mechanisms of heme iron absorption: current questions and controversies. World J Gastroenterol 14:4101–4110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772

    Article  CAS  PubMed  Google Scholar 

  • Wijayanti N, Katz N, Immenschuh S (2004) Biology of heme in health and disease. Curr Med Chem 11:981–986

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Neckers L (2007) Targeting the molecular chaperone heat shock protein 90 provides a multifaceted effect on diverse cell signaling pathways of cancer cells. Clin Cancer Res 13:1625–1629

    Article  CAS  PubMed  Google Scholar 

  • Yamakura F, Ikeda K (2006) Modification of tryptophan and tryptophan residues in proteins by reactive nitrogen species. Nitric Oxide 14:152–161

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M, Takahashi Y, Inano K, Horigome T, Sugano H (1991) Characterization of the hydrophobic region of heat shock protein 90. J Biochem 110:141–145

    Article  CAS  PubMed  Google Scholar 

  • Yi L, Jenkins PM, Leichert LI, Jakob U, Martens JR, Ragsdale SW (2009) Heme regulatory motifs in heme oxygenase-2 form a thiol/disulfide redox switch that responds to the cellular redox state. J Biol Chem 284:20556–20561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshikawa S, Shinzawa-Itoh K, Nakashima R et al (1998) Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science 280:1723–1729

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Kong Y, Dore LC et al (2007) An erythroid chaperone that facilitates folding of alpha-globin subunits for hemoglobin synthesis. J Clin Invest 117:1856–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Luo D, Miao R et al (2005) Hsp90-Akt phosphorylates ASK1 and inhibits ASK1-mediated apoptosis. Oncogene 24:3954–3963

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by National Institute of Health Grant HL081064 (to D.J.S and A.G.) and a Research Centre for Excellence Grant from the Cleveland Clinic (to A.G. and D.J.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, A., Stuehr, D.J. (2019). Hsp90 and Its Role in Heme-Maturation of Client Proteins: Implications for Human Diseases. In: Asea, A., Kaur, P. (eds) Heat Shock Protein 90 in Human Diseases and Disorders. Heat Shock Proteins, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-23158-3_12

Download citation

Publish with us

Policies and ethics