Skip to main content

Heat Shock Protein 60 Regulation of Skeletal Tissue Integrity

  • Chapter
  • First Online:
Heat Shock Protein 60 in Human Diseases and Disorders

Part of the book series: Heat Shock Proteins ((HESP,volume 18))

  • 324 Accesses

Abstract

Osteoporosis and osteoarthritis are the most prevalent degenerative skeletal diseases in the elderly. Deregulated osteoblast and chondrocyte behavior are prominent cellular features of these disorders. Organelle dysfunction disturbs cell survival and differentiation capacity, accelerating bone mass and articular cartilage loss. Heat shock protein 60 (HSP60) is a mitochondrial chaperonin essential to mitochondrial integrity and proteostasis. Its function to skeletal tissue homeostasis and degeneration warrants systemic characterization. Here, we highlight the merging evidence in regard to the involvement of this chaperonin in mitochondrial biogenesis, autophagy, and post-translational modification of bioactive proteins, contributing to tissue homeostasis, deterioration, and tumorigenesis in various physiological and pathological contexts. This article sheds a new light on the beneficial actions of HSP60 to osteoblast autophagy that protects bone tissue against osteoporosis development. We also offer a productive insight into how this chaperone protein sustains chondrocyte function to facilitate cartilage development and slow down osteoarthritis progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

μCT:

microcomputed tomography

Acetyl CoA:

acetyl coenzyme A

ADP:

adenosine diphosphate

AMPK:

AMP-activated protein kinase

Atg:

autophagy related proteins

ATP:

adenosine triphosphate

Bax:

BCL2 associated X apoptosis regulator

BNIP3:

BCL2 interacting protein 3

DKK-1:

dickkopf-1

ERK:

extracellular regulated MAP kinase

FOXO:

forkhead box subgroup O

HDAC1:

histone deacetylase 1

HSP60:

heat shock protein 60

HSPd1:

heat shock protein family D member 1

IGF-1:

insulin-like growth factor-1

IL-1β:

interleukin-1β

LC3:

microtubule associates protein 1 light chain 3 alpha

MMP:

matrix metalloproteinases

MSC:

mesenchymal stem cells

mtDNA:

mitochondrial DNA

mTOR:

mechanistic target of rapamycin kinase

NAD+:

nicotinamide adenine dinucleotide

NRF:

nuclear respiratory factor

OA:

osteoarthritis

O-GlcNAc:

O-linked N-acetylaglucosamine

PGC-1α:

peroxisome proliferator-activated receptor γ coactivator-1α

PGK:

phosphoglycerates kinase

PINK1:

PTEN induced kinase 1

PKA:

protein kinase A

PP2A:

serine-threonine protein phosphatase 2A

PTM:

post-translational modification reactions

RANKL:

receptor activator nuclear factor-κ ligand

REDD1:

DNA damage inducible transcript 4

RPTOR:

regulator-associated protein of mTOR complex 1

SOX9:

SRY-box 9

TCA:

tricarboxylic acid

SUMO:

small ubiquitin like modifier proteins

TFAM:

mitochondrial transcription factor A

TGF-β1:

transforming growth factor-β1

TNF-α:

tumor necrosis factor-α

ULK1:

unc-51 like autophagy activating kinase

References

  • Alvarez-Garcia O, Matsuzaki T, Olmer M, Plate L, Kelly JW, Lotz MK (2017) Regulated in development and DNA damage response 1 deficiency impairs autophagy and mitochondrial biogenesis in articular cartilage and increases the severity of experimental osteoarthritis. Arthritis Rheumatol 69:1418–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arlet JB, Ribeil JA, Guillem F et al (2014) HSP70 sequestration by free alpha-globin promotes ineffective erythropoiesis in beta-thalassaemia. Nature 514:242–246

    Article  CAS  PubMed  Google Scholar 

  • Arya RK, Singh A, Yadav NK et al (2015) Anti-breast tumor activity of Eclipta extract in-vitro and in-vivo: novel evidence of endoplasmic reticulum specific localization of Hsp60 during apoptosis. Sci Rep 5:18457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashrafi G, Schwarz TL (2013) The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20:31–42

    Article  CAS  PubMed  Google Scholar 

  • Berger E, Rath E, Yuan D et al (2016) Mitochondrial function controls intestinal epithelial stemness and proliferation. Nat Commun 7:13171

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertero E, Maack C (2018) Metabolic remodelling in heart failure. Nat Rev Cardiol 15:457–470

    Article  CAS  PubMed  Google Scholar 

  • Blanco FJ, Valdes AM, Rego-Perez I (2018) Mitochondrial DNA variation and the pathogenesis of osteoarthritis phenotypes. Nat Rev Rheumatol 14:327–340

    Article  CAS  PubMed  Google Scholar 

  • Bodnar M, Luczak M, Bednarek K et al (2016) Proteomic profiling identifies the inorganic pyrophosphatase (PPA1) protein as a potential biomarker of metastasis in laryngeal squamous cell carcinoma. Amino Acids 48:1469–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bross P, Magnoni R, Bie AS (2012) Molecular chaperone disorders: defective Hsp60 in neurodegeneration. Curr Top Med Chem 12:2491–2503

    Article  CAS  PubMed  Google Scholar 

  • Cai ZY, Yang B, Shi YX et al (2018) High glucose downregulates the effects of autophagy on osteoclastogenesis via the AMPK/mTOR/ULK1 pathway. Biochem Biophys Res Commun 503:428–435

    Article  CAS  PubMed  Google Scholar 

  • Canalis E (2013) Wnt signalling in osteoporosis: mechanisms and novel therapeutic approaches. Nat Rev Endocrinol 9:575–583

    Article  CAS  PubMed  Google Scholar 

  • Cazzaniga A, Maier JAM, Castiglioni S (2016) Impact of simulated microgravity on human bone stem cells: new hints for space medicine. Biochem Biophys Res Commun 473:181–186

    Article  CAS  PubMed  Google Scholar 

  • Cechetto JD, Soltys BJ, Gupta RS (2000) Localization of mitochondrial 60-kD heat shock chaperonin protein (Hsp60) in pituitary growth hormone secretory granules and pancreatic zymogen granules. J Histochem Cytochem 48:45–56

    Article  CAS  PubMed  Google Scholar 

  • Chandra D, Choy G, Tang DG (2007) Cytosolic accumulation of HSP60 during apoptosis with or without apparent mitochondrial release: evidence that its pro-apoptotic or pro-survival functions involve differential interactions with caspase-3. J Biol Chem 282:31289–31301

    Article  CAS  PubMed  Google Scholar 

  • Chen TH, Liu SW, Chen MR et al (2015) Neonatal death and heart failure in mouse with transgenic HSP60 expression. Biomed Res Int 2015:539805

    PubMed  PubMed Central  Google Scholar 

  • Chen H, Xing J, Hu X et al (2017) Inhibition of heat shock protein 90 rescues glucocorticoid-induced bone loss through enhancing bone formation. J Steroid Biochem Mol Biol 171:236–246

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Li X, Zhao W, Li T, Ouyang Q (2018) Parameter sensitivity analysis for a stochastic model of mitochondrial apoptosis pathway. PLoS One 13:e0198579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng Y, Sun J, Chen H et al (2016) Expression and location of HSP60 and HSP10 in the heart tissue of heat-stressed rats. Exp Ther Med 12:2759–2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi B, Choi M, Park C et al (2015) Cytosolic Hsp60 orchestrates the survival and inflammatory responses of vascular smooth muscle cells in injured aortic vessels. Cardiovasc Res 106:498–508

    Article  CAS  PubMed  Google Scholar 

  • Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840

    Article  CAS  PubMed  Google Scholar 

  • Christensen JH, Nielsen MN, Hansen J et al (2010) Inactivation of the hereditary spastic paraplegia-associated Hspd1 gene encoding the Hsp60 chaperone results in early embryonic lethality in mice. Cell Stress Chaperones 15:851–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corona Velazquez AF, Jackson WT (2018) So many roads: the multifaceted regulation of autophagy induction. Mol Cell Biol 38

    Google Scholar 

  • Deniset JF, Hedley TE, Hlavackova M et al (2018) Heat shock protein 60 involvement in vascular smooth muscle cell proliferation. Cell Signal 47:44–51

    Article  CAS  PubMed  Google Scholar 

  • Doria A, Gatto M, Punzi L (2013) Autophagy in human health and disease. N Engl J Med 368:1845

    Article  CAS  PubMed  Google Scholar 

  • Falkenberg M (2018) Mitochondrial DNA replication in mammalian cells: overview of the pathway. Essays Biochem 62:287–296

    Article  PubMed  PubMed Central  Google Scholar 

  • Favus MJ (2010) Bisphosphonates for osteoporosis. N Engl J Med 363:2027–2035

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Xing J, Feng G et al (2014) p16(INK4A) mediates age-related changes in mesenchymal stem cells derived from human dental pulp through the DNA damage and stress response. Mech Ageing Dev 141–142:46–55

    Article  PubMed  CAS  Google Scholar 

  • Gazali A (2012) Conference scene: taking the heat out of chaperokine function. Immunotherapy 4:773–775

    Article  CAS  PubMed  Google Scholar 

  • Gorska M, Marino Gammazza A, Zmijewski MA et al (2013) Geldanamycin-induced osteosarcoma cell death is associated with hyperacetylation and loss of mitochondrial pool of heat shock protein 60 (hsp60). PLoS One 8:e71135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goutas A, Syrrou C, Papathanasiou I, Tsezou A, Trachana V (2018) The autophagic response to oxidative stress in osteoarthritic chondrocytes is deregulated. Free Radic Biol Med 126:122–132

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Knowlton AA (2007) HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am J Physiol Heart Circ Physiol 292:H3052–H3056

    Article  CAS  PubMed  Google Scholar 

  • Haaland I, Opsahl JA, Berven FS et al (2014) Molecular mechanisms of nutlin-3 involve acetylation of p53, histones and heat shock proteins in acute myeloid leukemia. Mol Cancer 13:116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hayoun D, Kapp T, Edri-Brami M et al (2012) HSP60 is transported through the secretory pathway of 3-MCA-induced fibrosarcoma tumour cells and undergoes N-glycosylation. FEBS J 279:2083–2095

    Article  CAS  PubMed  Google Scholar 

  • Herzig S, Shaw RJ (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19:121–135

    Article  CAS  PubMed  Google Scholar 

  • Jeffery CJ (2018) Protein moonlighting: what is it, and why is it important? Philos Trans R Soc Lond Ser B Biol Sci 373

    Google Scholar 

  • Jeong DE, Lee D, Hwang SY et al (2017) Mitochondrial chaperone HSP-60 regulates anti-bacterial immunity via p38 MAP kinase signaling. EMBO J 36:1046–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalderon B, Kogan G, Bubis E, Pines O (2015) Cytosolic Hsp60 can modulate proteasome activity in yeast. J Biol Chem 290:3542–3551

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Adachi S, Matsushima-Nishiwaki R et al (2011) Regulation by heat shock protein 27 of osteocalcin synthesis in osteoblasts. Endocrinology 152:1872–1882

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Kim EM, Lee J et al (2006) Heat shock protein 60 modified with O-linked N-acetylglucosamine is involved in pancreatic beta-cell death under hyperglycemic conditions. FEBS Lett 580:2311–2316

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Koh JM, Lee YS et al (2009) Increased circulating heat shock protein 60 induced by menopause, stimulates apoptosis of osteoblast-lineage cells via up-regulation of toll-like receptors. Bone 45:68–76

    Article  CAS  PubMed  Google Scholar 

  • Kitami M, Kaku M, Rocabado JM, Ida T, Akiba N, Uoshima K (2016) Prolonged survival of transplanted osteoblastic cells does not directly accelerate the healing of calvarial bone defects. J Cell Physiol 231:1974–1982

    Article  CAS  PubMed  Google Scholar 

  • Kleinridders A, Lauritzen HP, Ussar S et al (2013) Leptin regulation of Hsp60 impacts hypothalamic insulin signaling. J Clin Invest 123:4667–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko JY, Wu RW, Kuo SJ et al (2012) Cannabinoid receptor 1 mediates glucocorticoid-induced bone loss in rats by perturbing bone mineral acquisition and marrow adipogenesis. Arthritis Rheum 64:1204–1214

    Article  CAS  PubMed  Google Scholar 

  • Ko JY, Sun YC, Li WC, Wang FS (2016) Chaperonin 60 regulation of SOX9 ubiquitination mitigates the development of knee osteoarthritis. J Mol Med (Berl) 94:755–769

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Nojiri H, Saita Y et al (2015) Mitochondrial superoxide in osteocytes perturbs canalicular networks in the setting of age-related osteoporosis. Sci Rep 5:9148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh JM, Lee YS, Kim YS et al (2009) Heat shock protein 60 causes osteoclastic bone resorption via toll-like receptor-2 in estrogen deficiency. Bone 45:650–660

    Article  CAS  PubMed  Google Scholar 

  • Kotlo K, Xing Y, Lather S et al (2014) PR65A phosphorylation regulates PP2A complex signaling. PLoS One 9:e85000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leach MD, Stead DA, Argo E, Brown AJ (2011) Identification of sumoylation targets, combined with inactivation of SMT3, reveals the impact of sumoylation upon growth, morphology, and stress resistance in the pathogen Candida albicans. Mol Biol Cell 22:687–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lian WS, Ko JY, Chen YS et al (2018) Chaperonin 60 sustains osteoblast autophagy and counteracts glucocorticoid aggravation of osteoporosis by chaperoning RPTOR. Cell Death Dis 9:938

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Cao H, Li J et al (2017) Autophagy induced by DAMPs facilitates the inflammation response in lungs undergoing ischemia-reperfusion injury through promoting TRAF6 ubiquitination. Cell Death Differ 24:683–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Z, Chen Y, Aponte AM, Battaglia V, Gucek M, Sack MN (2015) Prolonged fasting identifies heat shock protein 10 as a Sirtuin 3 substrate: elucidating a new mechanism linking mitochondrial protein acetylation to fatty acid oxidation enzyme folding and function. J Biol Chem 290:2466–2476

    Article  CAS  PubMed  Google Scholar 

  • Madeira VMC (2018) Overview of mitochondrial bioenergetics. Methods Mol Biol 1782:1–6

    Article  CAS  PubMed  Google Scholar 

  • Magnoni R, Palmfeldt J, Christensen JH et al (2013) Late onset motoneuron disorder caused by mitochondrial Hsp60 chaperone deficiency in mice. Neurobiol Dis 54:12–23

    Article  CAS  PubMed  Google Scholar 

  • Marino Gammazza A, Campanella C, Barone R et al (2017) Doxorubicin anti-tumor mechanisms include Hsp60 post-translational modifications leading to the Hsp60/p53 complex dissociation and instauration of replicative senescence. Cancer Lett 385:75–86

    Article  CAS  PubMed  Google Scholar 

  • Memme JM, Oliveira AN, Hood DA (2016) Chronology of UPR activation in skeletal muscle adaptations to chronic contractile activity. Am J Physiol Cell Physiol 310:C1024–C1036

    Article  PubMed  PubMed Central  Google Scholar 

  • Merendino AM, Bucchieri F, Campanella C et al (2010) Hsp60 is actively secreted by human tumor cells. PLoS One 5:e9247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miyasaka M, Nakata H, Hao J, Kim YK, Kasugai S, Kuroda S (2015) Low-intensity pulsed ultrasound stimulation enhances heat-shock protein 90 and mineralized nodule formation in mouse calvaria-derived osteoblasts. Tissue Eng Part A 21:2829–2839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon A, Bacchini P, Bertoni F et al (2010) Expression of heat shock proteins in osteosarcomas. Pathology 42:421–425

    Article  CAS  PubMed  Google Scholar 

  • Neumann E, Brandenburger T, Santana-Varela S et al (2016) MicroRNA-1-associated effects of neuron-specific brain-derived neurotrophic factor gene deletion in dorsal root ganglia. Mol Cell Neurosci 75:36–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nisemblat S, Yaniv O, Parnas A, Frolow F, Azem A (2015) Crystal structure of the human mitochondrial chaperonin symmetrical football complex. Proc Natl Acad Sci U S A 112:6044–6049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nollet M, Santucci-Darmanin S, Breuil V et al (2014) Autophagy in osteoblasts is involved in mineralization and bone homeostasis. Autophagy 10:1965–1977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Omari S, Makareeva E, Roberts-Pilgrim A et al (2018) Noncanonical autophagy at ER exit sites regulates procollagen turnover. Proc Natl Acad Sci U S A 115:E10099–E1E108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osterloh A, Kalinke U, Weiss S, Fleischer B, Breloer M (2007) Synergistic and differential modulation of immune responses by Hsp60 and lipopolysaccharide. J Biol Chem 282:4669–4680

    Article  CAS  PubMed  Google Scholar 

  • Padma Priya P, Grover M, Tatu US, Natarajan V (2015) Characterization of precursor PfHsp60 in Plasmodium falciparum cytosol during its asexual development in human erythrocytes. PLoS One 10:e0136401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Chen Y, Tishkoff DX et al (2013) SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell 50:919–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng C, Lu Z, Xie Z et al (2011) The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics 10:M111 012658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Plotkin LI, Bellido T (2016) Osteocytic signalling pathways as therapeutic targets for bone fragility. Nat Rev Endocrinol 12:593–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramachandran R, Fausett BV, Goldman D (2010) Ascl1a regulates Muller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway. Nat Cell Biol 12:1101–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rambold AS, Pearce EL (2018) Mitochondrial dynamics at the interface of immune cell metabolism and function. Trends Immunol 39:6–18

    Article  CAS  PubMed  Google Scholar 

  • Ren D, Fan M, Sun C, Zhou C, Li Y (2018) Capillary electrophoresis with laser induced fluorescence detection for study of the association of HSP60 gene polymorphism with gouty arthritis. J AOAC Int 102(3):810–814

    Google Scholar 

  • Robinson WH, Lepus CM, Wang Q et al (2016) Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12:580–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki K, Yoshida H (2015) Organelle autoregulation-stress responses in the ER, Golgi, mitochondria and lysosome. J Biochem 157:185–195

    Article  CAS  PubMed  Google Scholar 

  • Sato AY, Tu X, McAndrews KA, Plotkin LI, Bellido T (2015) Prevention of glucocorticoid induced-apoptosis of osteoblasts and osteocytes by protecting against endoplasmic reticulum (ER) stress in vitro and in vivo in female mice. Bone 73:60–68

    Article  PubMed  CAS  Google Scholar 

  • Sattui SE, Saag KG (2014) Fracture mortality: associations with epidemiology and osteoporosis treatment. Nat Rev Endocrinol 10:592–602

    Article  PubMed  Google Scholar 

  • Sedlackova L, Sosna A, Vavrincova P et al (2011) Heat shock protein gene expression profile may differentiate between rheumatoid arthritis, osteoarthritis, and healthy controls. Scand J Rheumatol 40:354–357

    Article  CAS  PubMed  Google Scholar 

  • Seibel MJ, Cooper MS, Zhou H (2013) Glucocorticoid-induced osteoporosis: mechanisms, management, and future perspectives. Lancet Diabetes Endocrinol 1:59–70

    Article  CAS  PubMed  Google Scholar 

  • Selvarajah GT, Bonestroo FA, Kirpensteijn J et al (2013) Heat shock protein expression analysis in canine osteosarcoma reveals HSP60 as a potentially relevant therapeutic target. Cell Stress Chaperones 18:607–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 20:745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suragani M, Aadinarayana VD, Pinjari AB et al (2013) Human resistin, a proinflammatory cytokine, shows chaperone-like activity. Proc Natl Acad Sci U S A 110:20467–20472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suwanwela J, Farber CR, Haung BL et al (2011) Systems genetics analysis of mouse chondrocyte differentiation. J Bone Miner Res 26:747–760

    Article  CAS  PubMed  Google Scholar 

  • Swaroop S, Sengupta N, Suryawanshi AR, Adlakha YK, Basu A (2016) HSP60 plays a regulatory role in IL-1beta-induced microglial inflammation via TLR4-p38 MAPK axis. J Neuroinflammation 13:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanaka K, Yamaguchi T, Kaji H, Kanazawa I, Sugimoto T (2013) Advanced glycation end products suppress osteoblastic differentiation of stromal cells by activating endoplasmic reticulum stress. Biochem Biophys Res Commun 438:463–467

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Tian E, Liu C, Wang Q, Deng H (2013) Oxidative stress induces monocyte necrosis with enrichment of cell-bound albumin and overexpression of endoplasmic reticulum and mitochondrial chaperones. PLoS One 8:e59610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang H, Chen Y, Liu X et al (2016) Downregulation of HSP60 disrupts mitochondrial proteostasis to promote tumorigenesis and progression in clear cell renal cell carcinoma. Oncotarget 7:38822–38834

    PubMed  PubMed Central  Google Scholar 

  • Ucer S, Iyer S, Kim HN et al (2017) The effects of aging and sex steroid deficiency on the murine skeleton are independent and mechanistically distinct. J Bone Miner Res 32:560–574

    Article  CAS  PubMed  Google Scholar 

  • Vilasi S, Bulone D, Caruso Bavisotto C et al (2017) Chaperonin of group I: oligomeric spectrum and biochemical and biological implications. Front Mol Biosci 4:99

    Article  PubMed  CAS  Google Scholar 

  • Vuppalapati KK, Bouderlique T, Newton PT et al (2015) Targeted deletion of autophagy genes Atg5 or Atg7 in the chondrocytes promotes caspase-dependent cell death and leads to mild growth retardation. J Bone Miner Res 30:2249–2261

    Article  CAS  PubMed  Google Scholar 

  • Vyas S, Zaganjor E, Haigis MC (2016) Mitochondria and cancer. Cell 166:555–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wadhwa R, Priyandoko D, Gao R et al (2016) Stress chaperone mortalin regulates human melanogenesis. Cell Stress Chaperones 21:631–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang FS, Lin CL, Chen YJ et al (2005) Secreted frizzled-related protein 1 modulates glucocorticoid attenuation of osteogenic activities and bone mass. Endocrinology 146:2415–2423

    Article  CAS  PubMed  Google Scholar 

  • Wang FS, Ko JY, Yeh DW, Ke HC, Wu HL (2008) Modulation of Dickkopf-1 attenuates glucocorticoid induction of osteoblast apoptosis, adipocytic differentiation, and bone mass loss. Endocrinology 149:1793–1801

    Article  CAS  PubMed  Google Scholar 

  • Wang FS, Ko JY, Weng LH, Yeh DW, Ke HJ, Wu SL (2009) Inhibition of glycogen synthase kinase-3beta attenuates glucocorticoid-induced bone loss. Life Sci 85:685–692

    Article  CAS  PubMed  Google Scholar 

  • Wang FS, Wu RW, Ko JY et al (2011) Heat shock protein 60 protects skeletal tissue against glucocorticoid-induced bone mass loss by regulating osteoblast survival. Bone 49:1080–1089

    Article  CAS  PubMed  Google Scholar 

  • Wang FS, Lian WS, Weng WT et al (2016) Neuropeptide Y mediates glucocorticoid-induced osteoporosis and marrow adiposity in mice. Osteoporos Int 27:2777–2789

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Gu J, Guo R, Huang Y, Yang M (2016) Structure of mammalian respiratory supercomplex I1III2IV1. Cell 167:1598–609 e10

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Zhu H, Guo L et al (2010) Lectin-like oxidized low-density lipoprotein receptor-1 delivers heat shock protein 60-fused antigen into the MHC class I presentation pathway. J Immunol 185:2306–2313

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto N, Tokuda H, Kuroyanagi G et al (2016) Heat shock protein 22 (HSPB8) limits TGF-beta-stimulated migration of osteoblasts. Mol Cell Endocrinol 436:1–9

    Article  CAS  PubMed  Google Scholar 

  • Yamano K, Matsuda N, Tanaka K (2016) The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep 17:300–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarrouk A, Vejux A, Mackrill J et al (2014) Involvement of oxysterols in age-related diseases and ageing processes. Ageing Res Rev 18:148–162

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhou X, Chang H et al (2016) Hsp60 exerts a tumor suppressor function by inducing cell differentiation and inhibiting invasion in hepatocellular carcinoma. Oncotarget 7:68976–68989

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was in part supported by grants [NHRI-EX107-10736SI] from the National Health Research Institute, [MOST107-2314-B-182A-038MY3; MOST107-2314-B-182A-012-MY2] from Ministry of Science and Technology, and [CMRPG8H0211-3; CLRPG8G0701-3] from Chang Gung Memorial Hospital, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Sheng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, FS., Lian, WS., Kuo, CW., Chen, YS., Chang, PR. (2019). Heat Shock Protein 60 Regulation of Skeletal Tissue Integrity. In: Asea, A., Kaur, P. (eds) Heat Shock Protein 60 in Human Diseases and Disorders. Heat Shock Proteins, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-23154-5_19

Download citation

Publish with us

Policies and ethics