Skip to main content

A Fast Explicit Integrator for Numerical Simulation of Multibody System Dynamics

  • Conference paper
  • First Online:
Multibody Dynamics 2019 (ECCOMAS 2019)

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 53))

  • 1853 Accesses

Abstract

A computationally efficient explicit integrator is proposed to solve the differential-algebraic equations (DAEs) in multibody system dynamics. Algebraic constraint equations in the DAEs are regularized by a simple stabilization method, yielding a set of first order ordinary differential equations (ODEs), whose large eigenvalues are located at the negative real axis. Those ODEs have specific stiff characters, and are integrated by a class of explicit integrators (the Runge-Kutta-Chebyshev family of ODE integrators) with large stability zones on the negative real axis, so as to achieve large step-sizes at the same requirement of accuracy. The integrator adopted in this work is of fourth order, verified by practical example, and compared to several popular integrators. The high efficiency of the explicit integrator renders it a good option for practical simulations of the dynamics of constraint mechanical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gear, C.W.: Simultaneous numerical solution of differential algebraic equations. IEEE Trans. Circ. Theory CT–18(1), 89–95 (1971)

    Article  Google Scholar 

  2. Orlandea, N., Chace, M.A., Calahan, D.A.: A sparsity-oriented approach to the design of mechanical systems, Part I and II, Paper No. 76-DET-19 and 76-DET-20. Presented at ASME Mechanical Conferences, Montreal, Quebec, Canada, October 1976

    Google Scholar 

  3. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial Value Problems in Differential Algebraic Equations, 2nd edn. SIAM Classics in Applied Mathematics, vol. 14. SIAM, Philadelphia (1997)

    Google Scholar 

  4. Gear, C.W., Gupta, G.A., Leimkuhler, B.: Automatic integration of Euler-Lagrange equations with constraints. J. Comput. Appl. Math. 12–13, 77–90 (1985)

    Article  MathSciNet  Google Scholar 

  5. Negrut, D., Rampalli, R., Ottarsson, G., Sajdak, A.: On an implementation of the Hilber-Hughes-Taylor method in the context of index 3 differential-algebraic equations of multibody dynamics. J. Comput. Nonlinear Dyn. 2(1), 73–85 (2007)

    Article  Google Scholar 

  6. Arnold, M., Brüls, O.: Convergence of the generalized-alpha scheme for constrained mechanical systems. Multibody Syst. Dyn. 18(2), 185–202 (2007)

    Article  MathSciNet  Google Scholar 

  7. Negrut, D., Jay, L.O., Khude, N.: A discussion of low-order numerical integration formulas for rigid and flexible multibody dynamics. J. Comput. Nonlinear Dyn. 4(2), 149–160 (2008)

    Google Scholar 

  8. Hairer, E., Roche, L., Lubich, C.: The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods. Springer, Heidelberg (1989)

    Book  Google Scholar 

  9. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Heidelberg (1996)

    Book  Google Scholar 

  10. Gear, C.W.: Towards explicit methods for differential algebraic equations. BIT 46, 505–514 (2005)

    Article  MathSciNet  Google Scholar 

  11. Verwer, J.H., Hundsdorfer, W.H., Sommeijer, B.P.: Convergence properties of the Runge-Kutta-Chebyshev method. Numer. Math. 57, 157–178 (1990)

    Article  MathSciNet  Google Scholar 

  12. Abdulle, A., Medovikov, A.A.: Second order Chebyshev methods based on orthogonal polynomials. Numer. Math. 90, 1–18 (2001)

    Article  MathSciNet  Google Scholar 

  13. Abdulle, A.: Fourth order chebyshev methods with recurrence relation. SIAM J. Sci. Comput. 23(6), 2041–2054 (2002)

    Article  MathSciNet  Google Scholar 

  14. Ostermeyer, G.P.: On Baumgarte stabilization for differential algebraic equations. In: Haug, E.J., Deyo, R.C. (eds.) Real-Time Integration Methods for Mechanical System Simulation, pp. 193–207 (1990)

    Chapter  Google Scholar 

  15. Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011005 (2008)

    Article  Google Scholar 

  16. Braun, D.J., Goldfarb, M.: Simulation of constrained mechanical systems Part I: an equation of motion, and Part II: explicit numerical integration. ASME J. Appl. Mech. 79(4), 041017–041018 (2012)

    Article  Google Scholar 

  17. Haug, E.J., Yen, J.: Generalized coordinate partitioning methods for numerical integration of differential-algebraic equations of dynamics. In: Haug, E.J., Deyo, R.C. (eds.) Real-Time Integration Methods for Mechanical System Simulation, pp. 97–114 (1990)

    Chapter  Google Scholar 

  18. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, pp. 166–167. Springer, Heidelberg (1987)

    Book  Google Scholar 

  19. Schiehlen, W.: Multibody Systems Handbook, pp. 10–15. Springer, Heidelberg (1990)

    Book  Google Scholar 

  20. Bae, D.S., Lee, J.K., Cho, H.J., Yae, H.: An explicit integration method for real time simulation of multibody vehicle models. Comput. Methods Appl. Mech. Eng. 187(1–2), 337–350 (2000). https://doi.org/10.1016/s0045-7825(99)00138-3

    Article  MATH  Google Scholar 

  21. Featherstone, R., Orin, D.: Robot dynamics: equations and algorithms. In: Proceedings of the 2000 IEEE International Conference on Robotics and Automation, San Francisco, CA, vol. 1, pp. 826–834 (2000). https://doi.org/10.1109/ROBOT.2000.844153

Download references

Acknowledgements

This work is supported by the Nature and Science Foundations of China (NSFC) under grant number 11772101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ren, H., Zhou, P. (2020). A Fast Explicit Integrator for Numerical Simulation of Multibody System Dynamics. In: Kecskeméthy, A., Geu Flores, F. (eds) Multibody Dynamics 2019. ECCOMAS 2019. Computational Methods in Applied Sciences, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-030-23132-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23132-3_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23131-6

  • Online ISBN: 978-3-030-23132-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics