Skip to main content

Hybrid Breeding in Rye (Secale cereale L.)

  • Chapter
  • First Online:
Book cover Advances in Plant Breeding Strategies: Cereals

Abstract

Rye is a robust and stress-tolerant cereal, grown on 4.4 million hectares, mainly in Northeastern Europe. Grain yields range, on average, from 2.0 to 5.8 mt ha−1 on farm level depending on the country, but reached >10 mt ha−1 in multi-locational official trials in Germany. Rye grain is used for bread making, distilling, homegrown feed and bioenergy production. Hybrid breeding has gained much attention caused by higher grain yields and a higher gain from selection compared to open-pollinated cultivars. Prerequisites are self-fertility, cytoplasmic-male sterility (CMS) with effective nuclear encoded genes to restore fertility (Rf) and distinct heterotic pools. Elaborated breeding plans are available. Commercial rye hybrids are crosses between a CMS single cross as seed parent and a restorer synthetic as pollinator. Molecular breeding was promoted in the last decade by the availability of PCR-based markers and the production of medium- to high-density single nucleotide polymorphism (SNP) assays. Markers are used for introgressing monogenic traits, developing landscapes of quantitative trait loci (QTL), and genomic selection. In the future, disease resistances to snow mold, stem rust, and Fusarium head blight, resilience to drought and heat stress, optimized feeding quality and yield improvement by broadening the genetic basis of hybrid breeding are important goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antoniou T, Marquardt RR, Cansfield PE (1981) Isolation, partial characterization, and antinutritional activity of a factor (pentosans) in rye grain. J Agric Food Chem 29:1240–1247

    Article  CAS  PubMed  Google Scholar 

  • Auinger H-J, Schönleben M, Lehermeier C et al (2016) Model training across multiple breeding cycles significantly improves genomic prediction accuracy in rye (Secale cereale L.). Theor Appl Genet 129:2043–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer E, Schmutzer T, Barilar I et al (2017) Towards a whole-genome sequence for rye (Secale cereale L.). Plant J 89:853–869

    Article  CAS  PubMed  Google Scholar 

  • Behre KE (1992) The history of rye cultivation in Europe. Veg Hist Archaeobotany 1(3):141–156

    Article  Google Scholar 

  • Besondere Ernte-und Qualitätsermittlung (BEE) (2017) Reihe: Daten-Analyse. (Special Harvest and Quality Survey. Series: Data analysis) (In German). https://www.bmel-statistik.de/landwirtschaft/ernte-und-qualitaet/. Accessed 26 June 2019

  • Boros D (2007) Quality aspects of rye for feed purposes. Vortr Pflanzenzüchtg 71:80–85

    Google Scholar 

  • Buksa K, Nowotna A, Praznik W et al (2010) The role of pentosans and starch in baking wholemeal rye bread. Food Res Int 43:2045–2051

    Article  CAS  Google Scholar 

  • Crespo-Herrera LA, Garkava-Gustavsson L, Åhman I (2017) A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.). Hereditas 154:14

    Article  PubMed  PubMed Central  Google Scholar 

  • DESTATIS (2017) Wachstum und Ernte, Feldfrüchte, Aug./Sept., Ausgabe 09, Fachserie 3, Reihe 3.2.1 – 09/2017. https://www.destatis.de/DE/Publikationen/Thematisch/LandForstwirtschaft/ErnteFeldfruechte/FeldfruechteAugustSeptember.html. Accessed 07 Mar 2018

  • DLG (2006) Zum Einsatz von Roggen in der Fütterung. http://www.dlg.org/fileadmin/downloads/fachinfos/futtermittel/Roggen_Fuetterung.pdf. Accessed 01 Mar 2018

  • EFSA (2011) EFSA Panel on dietetic products, nutrition and allergies (NDA); Scientific opinion on the substantiation of health claims related to rye fibre and changes in bowel function (ID 825), reduction of post–prandial glycaemic responses (ID 826) and maintenance of normal blood LDL–cholesterol concentrations (ID 827) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 9:2258

    Article  CAS  Google Scholar 

  • Eklund M, Strang EJP, Rosenfelder P et al (2016) Ileal endogenous loss and standardized ileal digestibility of amino acids in rye genotypes for pigs. J Anim Sci 94:310–312

    Article  CAS  Google Scholar 

  • EU (2007) Commission Regulation (EC) No 1126/2007. Retrieved from http://eur–lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:255:0014:0017:EN:PDF. Accessed 14 Feb 2018

  • EU (2017) EU Cereals Balance Sheets 2016/17 and 2017/18. Internet: https://ec.europa.eu/agriculture/sites/agriculture/files/cereals/presentations/–oilseeds/balance–sheets–and–forecasts_en.pdf. Accessed 29 June 2018

  • Falke KC, Sušić Z, Hackauf B et al (2008) Establishment of introgression libraries in hybrid rye (Secale cereale L.) from an Iranian primitive accession as a new tool for rye breeding and genomics. Theor Appl Genet 117:641–652

    Article  CAS  PubMed  Google Scholar 

  • Falke KC, Sušić Z, Wilde P et al (2009) Testcross performance of rye introgression lines developed by marker–assisted backcrossing using an Iranian accession as donor. Theor Appl Genet 118:1225–1238

    Article  CAS  PubMed  Google Scholar 

  • Falke KC, Wilde P, Wortmann H et al (2010) Correlation between per se and testcross performance in rye (Secale cereale L.) introgression lines estimated with a bivariate mixed linear model. Crop Sci 50:1863–1873

    Article  CAS  Google Scholar 

  • FAO (2018) Production. Crops. FAO, Rome. http://www.fao.org/faostat/en/#data/QC. Accessed 9 Mar 2018

  • Fengler AI, Marquardt RR (1988) Water-soluble pentosans from rye: II. Effects of rate of dialysis and on the retention of nutrients by the chick. Cereal Chem 65:298–302

    CAS  Google Scholar 

  • Fischer S, Melchinger AE, Korzun V et al (2010) Molecular marker assisted broadening of the Central European heterotic groups in rye with Eastern European germplasm. Theor Appl Genet 120:291–299

    Article  PubMed  Google Scholar 

  • Frederiksen SE, Petersen G (1998) A taxonomic revision of Secale (Triticeae, Poaceae). Nord J Bot 18:399–420

    Article  Google Scholar 

  • Geiger HH (1971) Cytoplasmatisch–genische Pollensterilität in Roggenformen iranischer Abstammung. Naturwissenschaften 58:98–99. (in German)

    Article  CAS  PubMed  Google Scholar 

  • Geiger HH, Miedaner T (1999) Hybrid rye and Heterosis. In: Coors JG, Pandey S (eds) Genetics and exploitation of heterosis in crops. Crop Sci Soc America, Madison, pp 439–450

    Google Scholar 

  • Geiger HH, Miedaner T (2009) Rye Breeding. In: Carena MJ (ed) Cereals (Handbook of plant breeding), 1st edn. Springer, New York, pp 157–181

    Google Scholar 

  • Geiger HH, Schnell FW (1970) Cytoplasmic male sterility in rye (Secale cereale L.). Crop Sci 10:590–593

    Article  Google Scholar 

  • Geiger HH, Yuan Y, Miedaner T et al (1995) Environmental sensitivity of cytoplasmic genic male sterility (CMS) in Secale cereale L. In: Kück U, Wricke G (eds) Genetic mechanisms for hybrid breeding. Adv Plant Breed 18:7–17

    Google Scholar 

  • Goddard M, Hayes B (2007) Genomic selection. J Anim Breed Genet 124:323–330

    Article  CAS  PubMed  Google Scholar 

  • Hackauf B, Bauer E, Korzun V et al (2017a) Fine mapping of the restorer gene Rfp3 from an Iranian primitive rye (Secale cereale L.). Theor Appl Genet 130:1179–1189

    Article  CAS  PubMed  Google Scholar 

  • Hackauf B, Haffke S, Fromme FJ et al (2017b) QTL mapping and comparative genome analysis of agronomic traits including grain yield in winter rye. Theor Appl Genet 130:1801–1817

    Article  CAS  PubMed  Google Scholar 

  • Haffke S, Kusterer B, Fromme FJ et al (2014) Analysis of covariation of grain yield and dry matter yield for breeding dual use hybrid rye. Bioenergy Res 7:424–429

    Article  Google Scholar 

  • Haffke S, Wilde P, Schmiedchen B et al (2015) Toward a selection of broadly adapted germplasm for yield stability of hybrid rye under normal and managed drought stress conditions. Crop Sci 55:1026–1034

    Article  Google Scholar 

  • Hagenblad J, Oliveira HR, Forsberg NEG et al (2016) Geographical distribution of genetic diversity in Secale landrace and wild accessions. BMC Plant Biol 16:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haseneyer G, Schmutzer T, Seidel M et al (2011) From RNA-seq to large-scale genotyping-genomics resources for rye (Secale cereale L.). BMC Plant Biol 11:131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haussmann BIG, Parzies HK, Presterl T et al (2004) Plant genetic resources in crop improvement. Plant Genet Resour 2:3–21

    Article  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49(1):12

    Article  CAS  Google Scholar 

  • Hepting L (1978) Analyse eines 7 × 7–Sortendialles zur Ermittlung geeigneten Ausgangsmaterials für die Hybridzüchtung bei Roggen (Analysis of a 7 × 7–variety diallel for determination of suitable base materials for hybrid breeding in rye) (In German.) Z. Pflanzenzüchtg 80:188–197

    Google Scholar 

  • Hillman G (1978) On the origins of domestic rye – Secale cereale: the finds from aceramic Can Hasan III in Turkey. Anatol Stud 28:157–174

    Article  Google Scholar 

  • Hirst KK (2017) Rye: the domestication history of Secale cereale. https://www.thoughtco.com/rye–the–domestication–history–4092612. Accessed 29 June 2018

  • Hübner M, Wilde P, Schmiedchen B et al (2013) Hybrid rye performance under natural drought stress in Europe. Theo Appl Genet 126:475–482

    Article  Google Scholar 

  • Kalih R, Maurer HP, Hackauf B et al (2014) Effect of rye dwarfing gene on plant height, heading stage, and Fusarium head blight in triticale (xTriticosecale Wittmack). Theor Appl Genet 127:1527–1536

    Article  PubMed  Google Scholar 

  • Kobyljanskij VD (1983) The system of the genus Secale L. Trudy Prikl Bot 79:24–38

    Google Scholar 

  • Korzun V, Börner A, Melz G (1996) RFLP mapping of the dwarfing (Ddw1) and hairy peduncle (Hp) genes on chromosome 5 of rye (Secale cereale L.). Theor Appl Genet 92:1073–1077. https://doi.org/10.1007/BF00224051

    Article  CAS  PubMed  Google Scholar 

  • Laidig F, Piepho HP, Rentel D et al (2017) Breeding progress, variation, and correlation of grain and quality traits in winter rye hybrid and population varieties and national on-farm progress in Germany over 26 years. Theor Appl Genet 130:981–998. https://doi.org/10.1007/s00122–2865–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Łapiński M, Stojałowski S (2001) Occurrence of male sterility-inducing cytoplasm in rye (Secale spp.) populations. Pant Breed Seed Sci 48:7–23

    Google Scholar 

  • Lundqvist A (1956) Self-incompatibility in rye. I. Genetic control in the diploid. Hereditas 42:293–348

    Article  Google Scholar 

  • Madej L, Raczynska-Bojanowska K, Rybka K (1990) Variability of the content of soluble non–digestible polysaccharides in rye inbred lines. Plant Breed 104:334–339

    Article  CAS  Google Scholar 

  • Mahone GS, Frisch M, Miedaner T et al (2013) Identification of quantitative trait loci in rye introgression lines carrying multiple donor chromosome segments. Theo Appl Genet 126:49–58

    Article  Google Scholar 

  • Martis MM, Zhou R, Haseneyer G et al (2013) Reticulate evolution of the rye genome. Plant Cell 25:3685–3698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marulanda JJ, Mi X, Melchinger AE et al (2016) Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale. Theor Appl Genet 129:1901–1913

    Article  CAS  PubMed  Google Scholar 

  • Masojć P, Milczarski P (2008) Relationship between QTLs for preharvest sprouting and alpha–amylase activity in rye grain. Mol Breed 23:75–84

    Article  CAS  Google Scholar 

  • Miedaner T (2014) Kulturpflanzen. Springer Spektrum, Berlin/Heidelberg. [in German]

    Book  Google Scholar 

  • Miedaner T, Wilde P (2019) Selection strategies for disease-resistant hybrid rye. In: Ordon F, Friedt W (eds) Advances in crop breeding techniques. Burleigh Dodds Science Publishing, Cambridge. (forthcoming)

    Google Scholar 

  • Miedaner T, Glass C, Dreyer F et al (2000) Mapping of genes for male–fertility restoration in 'Pampa' CMS winter rye (Secale cereale L.). Theor Appl Genet 101:1226–1233

    Article  CAS  Google Scholar 

  • Miedaner T, Wilde P, Wortmann H (2005) Combining ability of non-adapted sources for male–fertility restoration in Pampa CMS of hybrid rye. Plant Breed 124:39–43

    Article  Google Scholar 

  • Miedaner T, Hübner M, Korzun V et al (2012) Genetic architecture of complex agronomic traits examined in two testcross populations of rye (Secale cereale L.). BMC Genomics 13:706. https://doi.org/10.1186/1471–2164–13–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miedaner T, Schwegler DD, Wilde P et al (2014) Association between line per se and testcross performance for eight agronomic and quality traits in winter rye. Theor Appl Genet 127:33–41

    Article  PubMed  Google Scholar 

  • Miedaner T, Schmitt A-K, Klocke B et al (2016) Analyzing genetic diversity for virulence and resistance phenotypes in populations of stem rust (Puccinia graminis f. sp. secalis) and winter rye (Secale cereale L.). Phytopathology 106:1335–1343

    Article  PubMed  Google Scholar 

  • Miedaner T, Herter CP, Goßlau H et al (2017) Correlated effects of exotic pollen-fertility restorer genes on agronomic and quality traits of hybrid rye. Plant Breed 136:224–229

    Article  CAS  Google Scholar 

  • Miedaner T, Haffke S, Siekmann D et al (2018) Dynamic quantitative trait loci (QTL) for plant height predict biomass yield in hybrid rye (Secale cereale L.). Biomass Bioenergy 115:10–15. Doi https://doi.org/10.1016/j.biombioe.2018.04.001. Accessed 23 Apr 2018

    Article  CAS  Google Scholar 

  • Miedaner T, Korzun V, Bauer E (2019) Genomics-based hybrid rye breeding. In: Miedaner T, Korzun V (eds) Applications of genetic and genomic research in small-grain cereals. pp. 329–348. Elsevier, Amsterdam, NL. ISBN 9780081021637

    Chapter  Google Scholar 

  • Newell MA, Butler TJ (2013) Forage rye improvement in the southern United States: a review. Crop Sci 53:38–47

    Article  CAS  Google Scholar 

  • Oelke EA, Oplinger ES, Bahri H et al (1990) Rye. In: Alternative field crops manual. University of Wisconsin Extension, Madison and University of Minnesota, St. Paul. http://www.hort.purdue.edu/newcrop/afcm/rye.html. Accessed 1 Mar 2018

  • Ossent HP (1938) Zehn Jahre Roggenzüchtung in Müncheberg. Züchter 10:255–261. (in German)

    Article  Google Scholar 

  • Parat F, Schwertfirm G, Rudolph U et al (2016) Geography and end use drive the diversification of worldwide winter rye populations. Mol Ecol 25:500–514

    Article  PubMed  Google Scholar 

  • Perten H (1964) Application of the falling number method for evaluating alpha-amylase activity. Cereal Chem 41:127–140

    CAS  Google Scholar 

  • Piepho HP, Laidig F, Drobek T, Meyer U (2014) Dissecting genetic and non-genetic sources of long-term yield in German official variety trials. Theor Appl Genet 127:1009–1018

    Article  PubMed  Google Scholar 

  • Rabanus-Wallace MT, Stein N (2019) Progress in sequencing of Triticeae genomes and future uses. In: Miedaner T, Korzun V (eds) Applications of genetic and genomic research in small–grain cereals pp. 19-47. Elsevier, Amsterdam, NL. ISBN 9780081021637

    Chapter  Google Scholar 

  • Rode J (2008) Züchtung von Industrieroggen zur Bioethanolgewinnung. Dissertation, Universität Halle-Wittenberg

    Google Scholar 

  • Rodehutscord M, Rückert C, Maurer HP et al (2016) Variation in chemical composition and physical characteristics of cereal grains from different genotypes. Arch Anim Nutr 70:87–107

    Article  CAS  PubMed  Google Scholar 

  • Rosenfelder P, Mosenthin R, Spindler HK et al (2015) Standardized ileal digestibility of amino acids in eight genotypes of soft winter wheat fed to growing pigs. J Anim Sci 93:1133–1144

    Article  CAS  PubMed  Google Scholar 

  • Roux SR, Hackauf B, Linz A et al (2004) Leaf-rust resistance in rye (Secale cereale L.). 2. Genetic analysis and mapping of resistance genes Pr3, Pr4, and Pr5. Theor Appl Genet 110:192–201

    Article  CAS  PubMed  Google Scholar 

  • Sencer HA, Hawkes G (1980) On the origin of cultivated rye. Biol J Linn Soc 13:299–313

    Article  Google Scholar 

  • Schlegel R (2014) Rye – genetics, breeding, and cultivation. Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Stojałowski S, Łapiński M, Masojć P (2004) RAPD markers linked with restorer genes for the C-source of cytoplasmic male sterility in rye (Secale cereale L.). Plant Breed 123:428–433

    Article  Google Scholar 

  • Stracke S, Schilling AG, Förster J et al (2003) Development of PCR-based markers linked to dominant genes for male-fertility restoration in Pampa CMS of rye (Secale cereale L.). Theor Appl Genet 106:1184–1190

    Article  CAS  PubMed  Google Scholar 

  • Tang ZX, Ross K, Ren ZL et al (2011) Secale. In: Kole C (ed) Wild crop relatives: genomic and breeding resources: cereals. Springer, Berlin/Heidelberg, pp 367–396

    Chapter  Google Scholar 

  • Villareal RL, Bañuelos O, Mujeeb-Kazi A et al (1998) Agronomic performance of chromosomes 1B and T1BL.1RS near-isolines in the spring bread wheat Seri M82. Euphytica 103:195–202

    Article  Google Scholar 

  • Wang Y, Mette MF, Miedaner T et al (2014) The accuracy of prediction of genomic selection in elite hybrid rye populations surpasses the accuracy of marker-assisted selection and is equally augmented by multiple field evaluation locations and test years. BMC Genomics 15:556

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Mette MF, Miedaner T et al (2015) First insights into the genotype-phenotype map of phenotypic stability in rye. J Exp Bot 66:3275–3284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wehling P, Linz A, Hackauf B et al (2003) Leaf-rust resistance in rye (Secale cereale L.). 1. Genetic analysis and mapping of resistance genes Pr1 and Pr2. Theor Appl Genet 107:432–438

    Article  CAS  PubMed  Google Scholar 

  • Wehmann F, Geiger HH, Loock A (1991) Quantitative-genetic basis of sprouting resistance in rye. Plant Breed 106:196–203

    Article  Google Scholar 

  • Zohary D (1971) Origin of southwest Asiatic cereals: wheats, barley, oats and rye. In: Davis PH, Harper PT, Hedge I (eds) Plant life in south-west Asia. Botan Soc Edinburgh, pp 235–260

    Google Scholar 

  • Zuber T, Rodehutscord M (2016) Variability in amino acid digestibility of wheat grains from diverse genotypes examined in caecectomised laying hens. Eur Poult Sci 80:e1–e18

    Google Scholar 

  • Zuber T, Miedaner T, Rosenfelder P et al (2016) Amino acid digestibility of different rye genotypes in caecectomised laying hens. Arch Anim Nutr 70:470–487

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors wish to recognize the very significant contributions made to hybrid rye breeding by Prof. Dr. Dr.h.c. Hartwig H. Geiger, University of Hohenheim, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Miedaner .

Editor information

Editors and Affiliations

Appendices

Appendices

9.1.1 Appendix I: Research Institutes Relevant to Rye

Institution

Specialization and research activities

Contact information and website

State Plant Breeding Institute, University of Hohenheim

Hybrid rye breeding, resistance genetics, genomics

Fruwirthstr. 21, 70599 Stuttgart, Germany https://www.uni-hohenheim.de/organisation/einrichtung/landessaatzuchtanstalt

Plant Breeding, Technical University of Munich

Construction of high-density SNP chips, genomic selection

Liesel-Beckmann Str. 2, 85354 Freising, Germany http://www.plantbreeding.wzw.tum.de

Federal Research Centre for Cultivated Plants (JKI)

Marker-based approaches

Rudolf-Schick-Platz 3a, 18190 Sanitz, Germany https://www.julius-kuehn.de/gross-luesewitz

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)

High-throughput sequencing, assembling rye genome

Corrensstr. 3, 06466 Gatersleben, Germanyhttp://www.ipk-gatersleben.de

Scientific and Practical Centre of Belarusian NAS for Arable Farming

Rye breeding

Timiryazeva st. 1, 222160 Zhodino, Belarus http://www.izis.by

Institute of Plant Genetics, Polish Academy of Science

Rye breeding research, molecular analysis of single traits

Ul. Strzeszyńska 34, 60–479 Poznań, Poland http://www.igr.poznan.pl

Institute of Plant Breeding and Acclimation – National Research Institute

Rye breeding research, Polish gene bank, data base on rye genetic resources

Radzikow, Poland http://www.ihar.edu.pl

N.I. Vavilov Research Institute of Plant Industry

Largest gene bank of rye, usage of genetic resources, resistance breeding

Bolshaya Morskaya st. 44, 190000 St.-Petersburg, Russiahttp://vir.nw.ru

Federal State Budgetary Scientific Institution Tatar Scientific Research Institute of Agriculture

Population rye breeding, resistance breeding, quality breeding

Orenburg tract, 48, 420059 Kazan, Tatarstan, Russia http://www.antat.ru/en/structure/agricultural

Moscow Nemchinovka Agricultural Research Institute

Rye breeding and research

Kalinia str. 1, Nemchinovka-1, 143026, Russia

9.1.2 Appendix II: Origin of Genetic Resources of Rye

Institution

Country

No. of accessions

Institute of Botany

Armenia

18

Laboratory of Plants Gene Pool and Breeding

Armenia

Scientific Center of Agrobiotechnology

Armenia

AGES Linz – Austrian Agency for Health and Food Safety/Seed Collection

Austria

99

Genebank Tyrol/Tyrolean Government

Austria

Institute of Special Crops, Agricultural Research Center Styria

Austria

Arche Noah Association

Austria

Research Institute of Agriculture

Azerbaijan

132

Genetic Resources Institute

Azerbaijan

Institute for Plant Genetic Resources “K. Malkov”

Bulgaria

1248

Genetic Resources Institute, University of Banjaluka

Bosnia and Herzegovina

1

Station de recherche Agroscope Changins-Wädenswil

Switzerland

70

Sortengarten Erschmatt

Switzerland

Genebank Department, Division of Genetics and Plant Breeding, Research Institute of Crop Production

Czech Republic

683

Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research

Germany

2409

Comunidad de Madrid. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros Agrónomos. Banco de Germoplasma

Spain

500

Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria. Centro Nacional de Recursos Fitogenéticos

Spain

Junta de Extremadura. Dirección General de Ciencia y Tecnología. Centro de Investigación Agraria Finca La Orden – Valdesequera

Spain

Cabildo Insular de Tenerife. Centro de Conservación de la Biodiversidad Agrícola de Tenerife

Spain

Jogeva Plant Breeding Institute

Estonia

6

Genetic Resources Unit, Institute of Biological, Environmental & Rural Sciences, Aberystwyth University

United Kingdom

1

Niko Ketskhoveli Institute of Botany

Georgia

4

Greek Genebank, Agricultural Research Center of Macedonia and Thrace, National Agricultural Research Foundation

Greece

11

Institute for Agrobotany

Hungary

360

Department of Agriculture, Fisheries and Food, National Crop Variety Testing Centre

Ireland

5

Lithuanian Institute of Agriculture

Lithuania

14

Latvian Forestry Research Institute “Silava”

Latvia

9

Faculty of Agriculture, University Ss. Cyril and Methodius

Macedonia

25

Institute of Agriculture

Montenegro

4

Nordic Genetic Resource Center

Sweden

335

Plant Breeding and Acclimatization Institute

Poland

2424

Polish Academy of Sciences Botanical Garden – Center for Biological Diversity Conservation in Powsin

Poland

2428

Banco de Germoplasma – Departamento de Recursos Genéticos e Melhoramento, Estaçao Agronómica Nacional, Instituto Nacional de Investigaçao Agrária

Portugal

567

Suceava Genebank

Romania

483

University of Agricultural Sciences and Veterinary Medicine Timisoara

Romania

 

Agricultural Research Station Suceava

Romania

 

N.I. Vavilov All-Russian Scientific Research Institute of Plant Industry

Russian Federation

2928

Plant Production Research Center Piestany

Slovakia

161

Plant Genetic Resources Department

Turkey

425

Institute of Plant Production n.a. V.Y. Yurjev of UAAS

Ukraine

270

Sum

 

15,620

Not included:

  

US National Plant Germplasm system https://npgsweb.ars-grin.gov/gringlobal/search.aspx

Diverse

1937

  1. Sources: European Secale Database (https://bankgenow.edu.pl/en/baza-danych/europejska-baza-zyta/), US National Plant Germplasm system (see above)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miedaner, T., Laidig, F. (2019). Hybrid Breeding in Rye (Secale cereale L.). In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Cereals. Springer, Cham. https://doi.org/10.1007/978-3-030-23108-8_9

Download citation

Publish with us

Policies and ethics