Skip to main content

Molecular Breeding Strategies for Genetic Improvement in Rice (Oryza sativa L.)

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Cereals

Abstract

The current progress in crop research has provided a useful benchmark to evaluate crop-breeding improvement using genomics and molecular breeding techniques. The generation of huge amounts of molecular-genetic data has provided several ways to utilize the available genetic resources and to find solutions to the demanding goals of plant breeding. Rice being a staple food is consumed as an essential part of the dietary requirement by most of the developing countries. With the increase in population growth, traditional breeding methods cannot find a viable solution for sustainable crop production and food security. Since genetics and breeding are closely associated, combining these two has resulted in remarkable progress in rice-breeding programs. The presence of genetic diversity within cultivated crops and their wild relatives provides a platform for gene discovery of the agronomical important traits yet to be sufficiently discovered and utilized. This progress of developing new rice varieties with specific agronomic characters was made by using marker-assisted selection that opened new avenues for basic plant research. Combining conventional methods with molecular genetics will help in understanding the inheritance pattern of targeted traits in plant breeding and thus will lead to crop improvement in the future. This in turn can open new ways of improving the efficiency of breeding programs. Next-generation sequencing is the largest advancement and a boon for gene identification and variations in the genome. Recent techniques like CRISPR/Cas9 system are creating a major revolution in genome editing by adding or removing the genetic material at particular locations in the genome. Hence, molecular techniques are influencing the breeding process from selection to introgression of known genes/traits and thus sustaining the world’s food productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe A, Kosugi S, Yoshida K et al (2012) Genome sequencing reveals agronomically important loci in rice using Mut Map. Nat Biotech 30:174–178

    Article  CAS  Google Scholar 

  • Aljumaili SJ, Rafii MY, Latif MA et al (2018) Genetic diversity of aromatic rice germplasm revealed by SSR markers. Bio Med Res Int 2018:7658032

    Google Scholar 

  • Anupam A, Imam J, Quatadah SM et al (2017) Genetic diversity analysis of rice germplasm in Tripura state of Northeast India using drought and blast linked markers. Rice Sci 24:10–20

    Article  Google Scholar 

  • Anuradha K, Agarwal S, Rao YV et al (2012) Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of MadhukarĂ—Swarna RILs. Gene 508:233–240

    Article  CAS  PubMed  Google Scholar 

  • Arora L, Narula A (2017) Gene editing and crop improvement using CRISPR-Cas9 system. Front Plant Sci 8:1932

    Article  PubMed  PubMed Central  Google Scholar 

  • Arunakumari K, Durgarani CV, Satturu V et al (2016) Marker-assisted pyramiding of genes conferring resistance against bacterial blight and blast diseases into Indian rice variety MTU1010. Rice Sci 23:306–316

    Article  Google Scholar 

  • Ashkani S, Rafii MY, Shabanimofrad M et al (2015) Allele mining strategies: principles and utilisation for blast resistance genes in rice (Oryza sativa L.). Curr Issues Mol Biol 17:57–74

    PubMed  Google Scholar 

  • Bennetzen JL, Ramakrishna W (2002) Numerous small rearrangements of gene content, order and orientation differentiate grass genomes. Plant Mol Biol 48:821–827

    Article  CAS  PubMed  Google Scholar 

  • Boonchuay P, Cakmak I, Rerkasem B, Prom-U-Thai C (2013) Effect of different foliar zinc application at different growth stages on seed zinc concentration and its impact on seedling vigor in rice. Soil Sci Plant Nutr 59:180–188

    Article  CAS  Google Scholar 

  • Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from Harvest Plus, 2003 through 2016. Glob Food Sec 12:49–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Brara B, Jaina RK, Jain S (2015) Correlation of molecular marker allele size with physio-morphological and micronutrient (Zn, Fe) traits among rice genotypes. Int J Curr Sci 15:42–50

    Google Scholar 

  • Brozynska M, Furtado A, Henry RJ (2015) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Pl Biotech J 14:1070–1085

    Article  CAS  Google Scholar 

  • Burkart-Waco D, Tsai H, Ngo K et al (2017) Next-generation sequencing for targeted discovery of rare mutations in rice. In: Jankowicz-Cieslak J, Tai T, Kumlehn J, Till B (eds) Biotechnologies for plant mutation breeding. Springer, Cham, pp 323–340

    Chapter  Google Scholar 

  • Butardo VM, Fitzgerald MA, Bird AR et al (2011) Impact of down-regulation of starch branching enzyme IIb in rice by artificial micro RNA-and hairpin RNA-mediated RNA silencing. J Exp Bot 62:4927–4941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butt H, Eid A, Ali Z et al (2017) Efficient CRISPR/Cas9-mediated genome editing using a chimeric single-guide RNA molecule. Front Plant Sci 8:1441

    Article  PubMed  PubMed Central  Google Scholar 

  • Cakmak I, Kalayci M, Ekiz H et al (1999) Zn deficiency as an actual problem in plant and human nutrition in Turkey: a NATO- Science for Stability Project. Field Crops Res 60:175–188

    Article  Google Scholar 

  • Cao P, Jung KH, Choi D et al (2012) The rice oligonucleotide array database: an atlas of rice gene expression. Rice 5:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandel G, Samuel P, Dubey M, Meena R (2011) In silico expression analysis of QTL specific candidate genes for grain micronutrient (Fe/Zn) content using ESTs and MPSS signature analysis in rice (Oryza sativa L). J Plant Genet Transgen 2:11–22

    Google Scholar 

  • Chang Y, Long T, Wu C (2012) Effort and contribution of T-DNA insertion mutant library for rice functional genomics research in China: review and perspective. J Integr Plant Biol 54:953–966

    Article  CAS  PubMed  Google Scholar 

  • Cheema KK, Grewal NK, Vikal Y et al (2008) A novel bacterial blight resistance gene from Oryza nivara mapped to 38 kb region on chromosome 4L and transferred to Oryza sativa L. Genet Res 90:397–407

    Article  CAS  Google Scholar 

  • Chen S, Jin W, Wang M et al (2003) Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant J 36:105–113

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Gao W, Chen S et al (2016) High-resolution QTL mapping for grain appearance traits and co-localization of chalkiness-associated differentially expressed candidate genes in rice. Rice 9:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng S, Hu P (2008) Development strategy of rice science and technology in China. Chin J Rice Sci 22:223–226

    Google Scholar 

  • Cho HY, Park SJ, Kim DS, Jang CS (2010) A TILLING rice population induced by gamma-ray irradiation and its genetic diversity. Korean J Breed Sci 42:365–373

    Google Scholar 

  • Collard BCY, Cruz CMV, McNally KL et al (2008) Rice molecular breeding laboratories in the genomics era: current statusand future considerations. Int J Plant Genom 2008:524847

    Google Scholar 

  • Cooper JL, Henikoff S, Comai L, Till BJ (2013) TILLING and ecotilling for rice. Methods Mol Biol 956:39–56

    Article  CAS  PubMed  Google Scholar 

  • Dash S, Van Hemert J, Hong L et al (2012) PLEXdb: gene expression resources for plants and plant pathogens. Nucl Acids Res 40:D1194–D1201

    Article  CAS  PubMed  Google Scholar 

  • De Abreu Neto JB, Frei M (2016) Microarray meta-analysis focused on the response of genes involved in redox homeostasis to diverseabiotic stresses in rice. Front Pl Sci 6:1260

    Google Scholar 

  • De Steur H, Mogendi JB, Blancquaert D et al (2014) Genetically modified rice with health benefits as a means to reduce micronutrient malnutrition. Global status, consumer preferences, and potential health impacts of rice biofortification. In: Watson RR, Preedy W, Zibadi S (eds) Wheat and rice in disease prevention and health. Academic, Cambridge, pp 283–299

    Chapter  Google Scholar 

  • Devos KM, Beales J, Nagamura Y, Sasaki T (1999) Arabidopsis-rice: will colinearity allow gene prediction across the eudicot-monocot divide? Genome Res 9:825–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dillon SL, Lawrence PK, Henry RJ et al (2007) Sorghum resolved as a distinct genus based on combined ITS1, ndhF and Adh1 analyses. Plant Syst Evol 268:29–43

    Article  Google Scholar 

  • Ding D, Chen K, Chen Y et al (2018) Engineering introns to express RNA guides for Cas9- and Cpf1-mediated multiplex genome editing. Mol Plant 11:542–552

    Article  CAS  PubMed  Google Scholar 

  • Dodeweerd AMV, Hall CR, Bent EG et al (1999) Identification and analysis of homologous segments of the genomes of rice and Arabidopsis thaliana. Genome 42:887–892

    Article  PubMed  Google Scholar 

  • Duan M, Sun Z, Shu L et al (2013) Genetic analysis of an elite super-hybrid rice parent using high-density SNP markers. Rice 6:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Fazaa M, EL Sabagh A, Anis G et al (2016) The agronomical performances of doubled haploid lines of rice (Oryza sativa L.) derived from anther culture. J Agric Sci 8:177–183

    Google Scholar 

  • Fekih R, Takagi H, Tamiru M et al (2013) MutMap+: genetic mapping and mutant identification without crossing in rice. PLoS One 8:e68529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiyaz RA, Yadav AK, Krishnan SG et al (2016) Mapping quantitative trait loci responsible for resistance to bakanae disease in rice. Rice 9:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuchs EJ, Meneses MartĂ­nez A, Calvo A et al (2016) Genetic diversity in Oryza glumaepatula wild rice populations in Costa Rica and possible gene flow from O. sativa. Peer J 7:e1875

    Article  CAS  Google Scholar 

  • Fukuoka S, Saka N, Mizukami Y et al (2015) Gene pyramiding enhances durable blast disease resistance in rice. Sci Rep 5:7773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gande NK, Kundur PJ, Soman R et al (2014) Identification of putative candidate gene markers for grain zinc content using recombinant inbred lines (RIL) population of IRRI38 Ă— Jeerigesanna. Afr J Biotech 13:657–663

    Article  CAS  Google Scholar 

  • Gichuhi E, Himi E, Takahashi H et al (2016) Identification of QTLs for yield-related traits in RILs derived from the cross between pLIA-1 carrying Oryza longistaminata chromosome segments and Norin 18 in rice. Breed Sci 66:720–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grewal D, Manitoa C, Bartolome V (2011) Doubled haploids generated through anther culture from crosses of elite indica and japonica cultivars and/or lines of rice: large-scale production, agronomic performance, and molecular characterization. Crop Sci 51:2544–2553

    Article  Google Scholar 

  • Gueye T, Ndir KN (2010) In vitro production of double haploid plants from two rice species (Oryza sativa L. and Oryza glaberrima Steudt.) for the rapid development of new breeding material. Sci Res Essays 57:709–713

    Google Scholar 

  • Hamada K, Hongo K, Suwabe K et al (2011) OryzaExpress: an integrated database of gene expression networks and omics annotations in rice. Plant Cell Phys 52:220–229

    Article  CAS  Google Scholar 

  • Hansen TH, Laursen KH, Persson DP et al (2009) Micro-scaled high-throughput digestion of plant tissue samples for multi-elemental analysis. Plant Methods 5:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hill CB, Li C (2016) Genetic architecture of flowering phenology in cereals and opportunities for crop improvement. Front Plant Sci 7:1906

    Article  PubMed  PubMed Central  Google Scholar 

  • Hiwasa-Tanase K, Ezura H (2016) Molecular breeding to create optimized crops: from genetic manipulation to potential applications in plant factories. Front Plant Science 7:539

    Article  Google Scholar 

  • Hu KM, Qiu DY, Shen XL et al (2008) Isolation and manipulation of quantitative trait loci for disease resistance in rice using a candidate gene approach. Mol Plant 1:786–793

    Article  CAS  PubMed  Google Scholar 

  • Huang N, Angeles ER, Domingo J et al (1997) Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet 95:313–320

    Article  CAS  Google Scholar 

  • Huang XZ, Zeng XF, Zhao DG et al (2017) Construction and analysis of tify1a and tify1b mutants in rice (Oryza sativa) based on CRISPR/Cas9 technology. J Agric Biotech 25:1003–1012

    Google Scholar 

  • Ikehashi H, Araki H (1986) Rice genetics. Genetics of F1sterility in remote crosses of rice. International Rice Research Institute, Manila, pp 119–130

    Google Scholar 

  • Ishikawa R, Iwata M, Taniko K et al (2017) Detection of quantitative trait loci controlling grain zinc concentration using Australian wild rice, Oryza meridionalis, a potential genetic resource for biofortification of rice. PLoS One 12:e0187224. https://doi.org/10.1371/journal.pone.0187224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain M, Moharana KC, Shankar R et al (2014) Genome wide discovery of DNA polymorphisms in rice cultivars with contrasting drought and salinity stress response and their functional relevance. Plant Biotech J 12:53–264

    Article  CAS  Google Scholar 

  • Jeong DH, An S, Kang HG et al (2002) T-DNA Insertional mutagenesis for activation tagging in rice. Plant Phys 130:1636–1644

    Article  CAS  Google Scholar 

  • Ji Z, Yang S, Zeng Y et al (2016) Pyramiding blast, bacterial blight and brown planthopper resistance genes in rice restorer lines. J Integr Agric 15:1432–1440

    Article  CAS  Google Scholar 

  • Jiang N, Bao Z, Zhang X et al (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569–573

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Zhou H, Bi H et al (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucl Acids Res 41:e188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin X, Chen Y, Liu P et al (2018) Introgression from cultivated rice alters genetic structures of wild relative populations: implications for in situ conservation. AoB Plants 10:plx055

    Article  PubMed  Google Scholar 

  • Johnson-Beebout SE, Lauren JG, Duxbury JM (2009) Immobilization of zinc fertilizer in flooded soils monitored by adapted DTPA soil test. Comm Soil Sci Plant Anal 40:1842–1861

    Article  CAS  Google Scholar 

  • Joshi RK, Nayak S (2010) Gene pyramiding-abroad spectrum technique for developing durable stress resistance in crops. Biotech Mol Biol Rev 5:51–60

    CAS  Google Scholar 

  • Jung KH, Kim SR, Giong HK et al (2015) Genome-wide identification and functional analysis of genes expressed ubiquitously in rice. Mol Plant 8:276–289

    Article  CAS  PubMed  Google Scholar 

  • Khanin P, Sunayana R, Verma H et al (2016) Microsatellite based association studies for grain mineral content in local winter (Sali) rice of Assam. Indian J Genet Pl Breed 76:356–360

    Article  CAS  Google Scholar 

  • Kharabian-Masouleh A, Daniel LE, Waters DLE et al (2011) Discovery of polymorphisms in starch-related genes in rice germplasm by amplification of pooled DNA and deeply parallel sequencing. Plant Biotech J 2011:1074–1085

    Article  CAS  Google Scholar 

  • Krishnan A, Guiderdoni E, An G et al (2009) Mutant resources in rice for functional genomics of the grasses. Plant Phys 149:165–170

    Article  CAS  Google Scholar 

  • Lee TH, Kim YK, Pham TTM et al (2009) Rice Array Net: a database for correlating gene expression from transcriptome profiling, and its application to the analysis of coexpressed genes in rice. Plant Phys 151:16–33

    Article  CAS  Google Scholar 

  • Li T, Liu B, Spalding MH et al (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    Article  CAS  PubMed  Google Scholar 

  • Li J, Pan Y, Guo H et al (2018a) Fine mapping of QTL qCTB10-2 that confers cold tolerance at the booting stage in rice. Theor Appl Genet 131:157–166

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Xiao J, Chen L et al (2018b) Rice functional genomics research: past decade and future. Mol Plant 11:359–380

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Zhang D, Chen M et al (2016) Development of japonica photo-sensitive genic male sterile rice lines by editing carbon starved anther using CRISPR/Cas9. J Genet Genom 43:415–419

    Article  Google Scholar 

  • Li W, Gill BS (2002) The colinearity of the Sh2/A1 orthologous region in rice, sorghum and maize is interrupted and accompanied by genome expansion in the triticeae. Genet 160:1153–1162

    CAS  Google Scholar 

  • Liu H, Sachidanandam R, Stein L (2001) Comparative genomics between rice and Arabidopsis shows scant collinearity in gene order. Genome Res 11:2020–2026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu GF, Yang J, Zhu J (2006) Mapping QTL for biomass yield and its components in rice (Oryza sativa L.). Acta Genet Sin 33:607–616

    Article  PubMed  Google Scholar 

  • Ma L, Chen C, Liu X et al (2005) A microarray analysis of the rice transcriptome and its comparison to Arabidopsis. Genome Res 15:1274–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Zhang Q, Zhu Q et al (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8:1274–1284

    Article  CAS  PubMed  Google Scholar 

  • Mayer KFX, Martis M, Hedley PE et al (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCouch SR, Doerge RW (1995) QTL mapping in rice. Trends Genet 11:482–487

    Article  CAS  PubMed  Google Scholar 

  • Minkenberg B, Wheatley M, Yang Y (2017) CRISPR/Cas9-enabled multiplex genome editing and its application. Prog Mol Biol Transl Sci 149:111–132

    Article  PubMed  Google Scholar 

  • Mochida K, Shinozaki K (2013) Unlocking Triticeae genomics to sustainably feed the future. Plant Cell Phys l54:1931–1950

    Article  CAS  Google Scholar 

  • Mohapatra T, Robin S, Sarla N et al (2014) EMS induced mutants of upland rice variety Nagina 22: generation and characterization. Proc Indian Nat Sci Acad 80:163–172

    Article  Google Scholar 

  • Morell MK, Kosar-Hashemi B, Cmiel M et al (2003) Barley sex 6 mutants lack starch synthase IIa activity and contain a starch with novel properties. Plant J 34:173–185

    Article  CAS  PubMed  Google Scholar 

  • Nakandalage N, Nicolas M, Norton RM et al (2016) Improving rice zinc biofortification success rates through genetic and crop management approaches in a changing environment. Front Plant Sci 7:764

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson DR, Schuler MA, Paquette SM et al (2004) Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P 450 genes and pseudogenes from a monocot and a dicot. Plant Phys 135:756–772

    Article  CAS  Google Scholar 

  • Nguyen H, Chen XY, Jiang M et al (2016) Development and molecular characterization of a doubled haploid population derived from a hybrid between japonica rice and wide compatible indica rice. Breed Sci 66:552–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ning J, Zhang B, Wang N et al (2011) Increased leaf angle1, a Raf-like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the lamina joint of rice. Plant Cell 23:4334–4347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauk J, JancsĂł M, Simon-Kiss I (2009) Rice doubled haploids and breeding. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Dordrecht, pp 189–197

    Chapter  Google Scholar 

  • Phillips J, MagosBrehm J, van Oort B et al (2017) Climate change and national crop wild relative conservation planning. Ambio 46:630–643

    Article  PubMed  PubMed Central  Google Scholar 

  • Pradhan SK, Nayak DK, Mohanty S et al (2015) Pyramiding of three bacterial blight resistance genes for broad-spectrum resistance in deepwater rice variety, Jalmagna. Rice 8:19

    Article  PubMed Central  Google Scholar 

  • Proost S, Van Bel M, Sterck L et al (2009) PLAZA: a comparative genomics resource to study gene and genome evolution in plants. Plant Cell 21:3718–3731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu B, Zeng F, Xue D et al (2011) QTL mapping for chromium-induced growth and zinc, and chromium distribution in seedlings of a rice DH population. Euphytica 181:429–439

    Article  CAS  Google Scholar 

  • Rathinasabapathi P, Purushothaman N, Ramprasad VL, Parani M (2015) Whole genome sequencing and analysis of Swarna, a widely cultivated indica rice variety with low glycemic index. Sci Rep 5:11303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiffers I, Freire AB (1990) Production of doubled haploid rice plants (Oryza sativa L.) by anther culture. Plant Cell Tissue Organ Cult 21:165–170

    Article  Google Scholar 

  • Reig-Valiente JL, Viruel J, Sales E et al (2016) Genetic diversity and population structure of rice varieties cultivated in temperate regions. Rice 9:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryohei T, Akira A, Hiroki T et al (2015) Whole genome sequencing to identify genes and QTL in rice. In: Advances in the understanding of biological sciences using next generation sequencing (NGS) approaches. Springer, Heidelberg, pp 33–42

    Google Scholar 

  • Sasaki T, Sederoff RR (2003) Genome studies and molecular genetics. Rice genome Comp genomics High Plant Curr Opin Plant Biol 6:97–100

    Article  CAS  Google Scholar 

  • Sato Y, Antonio BA, Namiki N et al (2011) Rice XPro: a platform for monitoring gene expression in japonica rice grown under natural field conditions. Nucl Acids Res 39:D1141–D1148

    Article  CAS  PubMed  Google Scholar 

  • Shimamoto K, Kyozuka J (2002) Rice as model for comparative genomics of plants. Ann Rev Plant Biol 53:399–419

    Article  CAS  Google Scholar 

  • Sikora P, Chawade A, Larsson M et al (2011) Mutagenesis as a tool in plant genetics, functional genomics, and breeding. Int J Plant Genomics 2011:314829

    Article  PubMed  CAS  Google Scholar 

  • Singh N, Choudhury DR, Tiwar G et al (2016) Genetic diversity trend in Indian rice varieties: an analysis using SSR markers. BMC Genet 17:127

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh A, Carandang J, Gonzaga ZJC et al (2017) Identification of QTLs for yield and agronomic traits in rice under stagnant flooding conditions. Rice 10:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Solis J, Gutierrez A, Mangu V et al (2018) Genetic mapping of quantitative trait loci for grain yield under drought in rice under controlled greenhouse conditions. Front Chem. https://doi.org/10.3389/fchem.2017.00129

  • Sorrells ME, La Rota M, Bermudez-Kandianis CE et al (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spindel JE, Begum H, Akdemir D et al (2016) Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement. Hered 116:395–408

    Article  CAS  Google Scholar 

  • Sun H, Peng T, Zhao Y et al (2015) Dynamic analysis of gene expression in rice superior and inferior grains by RNA-Seq. PLoS One 10:e0137168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun Q, Zhou DX (2008) Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development. Proc Natl Acad Sci U S A 105:13679–13684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Jiao G, Liu Z et al (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.00298

  • Sun J, Yang L, Wang J et al (2018) Identification of a cold-tolerant locus in rice (Oryza sativa L.) using bulked segregant analysis with a next-generation sequencing strategy. Rice 11:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Zhang X, Wu C et al (2016) Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol Plant 9:628–631

    Article  CAS  PubMed  Google Scholar 

  • Susanto U (2008) Mapping of quantitative trait loci for high iron and zinc content in polished rice (Oryza sativa L) grain and some agronomic traits using simple sequence repeats markers. Ph.D thesis, Bogor Agricultural University, Bogor

    Google Scholar 

  • Swamy BPM, Rahman MA, Inabangan-Asilo MA et al (2016) Advances in breeding for high grain zinc in rice. Rice 9:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Takagi H, Abe A, Yoshida K et al (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  CAS  PubMed  Google Scholar 

  • Thomas E, Tovar E, Villafane C et al (2017) Distribution, genetic diversity and potential spatiotemporal scale of alien gene flow in crop wild relatives of rice (Oryza spp.) in Colombia. Rice (NY) 10:13

    Article  Google Scholar 

  • Till BJ, Cooper J, Tai TH et al (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toufighi K, Brady SM, Austin R et al (2005) The Botany Array Resource: e-northerns, expression angling, and promoter analyses. Plant J 43:153–163

    Article  CAS  PubMed  Google Scholar 

  • Trijatmiko KR, Duenas C, Tsakirpaloglou N et al (2016) Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci Rep 6:19792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umemoto T, Aoki N (2005) Single-nucleotide polymorphisms in rice starch synthase IIa that alter starch gelatinisation and starch association of the enzyme. Funct Plant Biol 32:763–768

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Wang C, Liu P et al (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoSONE 11:e0154027

    Article  CAS  Google Scholar 

  • Wang N, Long T, Yao W et al (2013) Mutant resources for the functional analysis of the rice genome. Mol Plant 6:596–604

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang J, Jin D et al (2015) Genome alignment spanning major Poaceae lineages reveals heterogeneous evolutionary. Mol Plant 8:885–898

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Liang Y, Li C et al (2005) Microarray analysis of gene expression involved in anther development in rice (Oryza sativa L.). Plant Mol Biol 58:721–737

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Liu Y, Dubchak I et al (2002) Comparative genomics approaches to study organism similarities and differences. J Biomed Informat 35:142–150

    Article  CAS  Google Scholar 

  • White PJ, Martin R (2009) Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  PubMed  Google Scholar 

  • Wu C, You C, Li C et al (2008) RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc Natl Acad Sci U S A 105:12915–12920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wunna WKN, Ohsawa R et al (2016) Genetic variation of rice (Oryza sativa L.) germplasm in Myanmar based on genomic compositions of DNA markers. Breed Sci 66:762–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue LJ, Zhang JJ, Xue HW (2009) Characterization and expression profiles of miRNAs in rice seeds. Nucl Acids Res 37:916–930

    Article  CAS  PubMed  Google Scholar 

  • Xu R, Qin R, Li H et al (2017) Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotech J 15:713–717

    Article  CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G et al (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci U S A 100:6263–6368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano M, Katayose Y, Ashikari M et al (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao N, Lee CR, Semagn K et al (2016) QTL mapping in threerice populations uncovers major genomic regions associated with African rice gall midge resistance. PLoSONE 11:e0160749

    Article  CAS  Google Scholar 

  • Zaman QU, Aslam Z, Yaseen M et al (2018) Zinc biofortification in rice: leveraging agriculture to moderate hidden hunger in developing countries. Arch Agron Soil Sci 64:147–116

    Article  CAS  Google Scholar 

  • Zeng YX, Xia LZ, Wen ZH et al (2015) Mapping resistant QTLs for rice sheath blight disease with a doubled haploid population. J Integr Agric 14:801–810

    Article  CAS  Google Scholar 

  • Zhang H, Mittal N, Leamy LJ et al (2016) Back into the wild-apply untapped genetic diversity of wild relatives for crop improvement. Evol Appl 10:5–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Pinson SRM, Tarpley L et al (2014) Mapping and validation of quantitative trait loci associated with concentration of 16 elements in unmilled rice grain. Theor Appl Genet 127:137–165

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, He M, Li J et al (2016) Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Sci Rep 6:37395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou T, Gao C, Du L et al (2014) Genetic analysis and QTL detection for resistance to white tip disease in rice. PLoSONE 9:e106099

    Article  CAS  Google Scholar 

  • Zhu M, Liu D, Liu W et al (2017) QTL mapping using an ultra-high-density SNP map reveals a major locus for grain yield in an elite rice restorer R998. Sci Rep 7:10914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgement

The authors are thankful to the School of Biotechnology, University of Jammu, Jammu, India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Appendices

8.1.1 Appendix I: Research Institutes Relevant to Rice Genetic Improvement

Country

Institution

Specialization and research activities

Contact information and website

Africa

Africa Rice Centre

Conserving rice genetic resources, rice breeding, rice processing

01 BP 4029, Abidjan 01, Côte d’Ivoire

Tel: +225 22 48 09 10

Email: AfricaRice@cgiar.org

America

University of California

Breeding and genetics

G. S. Khush

39399 Blackhawk Place, Davis, CA 95616, USA

Tel: (+1-530) 750-2440

Email: gurdev@khush.org

Arizona

The Arizona Genomics Institute

Facilitate the high throughput movement of genomic resources

1657 E Helen St,Tucson, AZ 85705, USA

Phone: +1 520-626-9596

Brazil

Agronomic Institute of Paraná (IAPAR)

Improvement of agronomic traits

Lutécia Beatriz Canalli

InstitutoAgronômico do Paraná – IAPAR

Rodovia Celso Garcia Cid, km 375. Londrina-PR 86047-902, Brazil.

Tel: (+55) 42 3219 9712

Email: lutecia@iapar.br

China

China National Rice Research Institute

Identification of genetic resources, investigation of new genes, functional genomic research

359 Tiyuchang Road, Hangzhou City, Zhejiang Province310006, P.R. China

Tel: +86-571-63370212

Email: icoffice_cnrri@126.com

Huazhong Agricultural University

Plant protection

Chao-Xi Luo

Huazhong Agricultural University, College of Plant Science and Technology, Shizishan, Hongshan District, Wuhan City, Hubei Province, China 430070

Tel: (27)-87281242

Email: cxluo@mail.hzau.edu.cn

Germany

University of Freiburg

Coordinator of Golden Rice – Project

Peter Beyer

Institute of Biology II (Cell Biology), Fahnenbergplatz, 79085 Freiburg im Breisgau, Germany

Tel: +49 761 203 2529

Email: peter.beyer@biologie.uni-freiburg.de

India

Indian Institute of Rice Research

Genetic diversity, better rice varieties

V. Ravindra Babu

Rajendranagar, Hyderabad, Telangana 500030

Email: director.iirr@icar.gov.in

Tel: +91-40-24591218; Fax: +91-40-24591217

National Research Centre on Plant Biotechnology

Genome sequencing and annotation of crop plants

N. K. Singh

Indian Council of Agricultural Research, Pusa Road, New Delhi

Tel: 011-25860186

Email: nksingh@nrcpb.org

Nigeria

National Cereals Research Institute

Yield enhancement and grain quality

DanbabaNahemiahBadeggi, Nigeria

Tel: +234 806 931 4862

Philippines

The International Rice Research Institute

Plant breeder, Project leader for Green Super Rice

Jauhar Ali

International Rice Research Institute, Los Baños, Laguna, Philippines

Tel: +63 2 580 5600 ext 2541

Email:j.ali@irri.org

Taiwan

Institute of Molecular Biology

Rice transformation

Su-May Yu

Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan

Tel: 886-2-2788-2695

Email: sumay@imb.sinica.edu.tw

8.1.2 Appendix II: Rice Genetic Resources

Cultivation location

Cultivar

Important traits

Thailand

Dinalaga

Drought resistant

Africa

IRAT106

Drought resistant

Australia

Doongara

High amylase content

Kyeema

Long grain and fragrant

Bangladesh

IR64-Sub1

Submerged

BRRI dhan69

Saline, irrigated

BRRI Dhan72

High Zn content

Brazil

Tre Smeses

Drought resistant

China

Yunlu 99

Drought resistant

Huhan3

Drought resistant

Ghana

CRI-Emopa

–

CRI Aunty Jane

–

India

Pusa Sugandh 2

Lodging tolerance, resistant to BB

Ambemohar

Fragrant variety

Pusa Sugandh 2

Lodging and shattering tolerance

DRR-Dhan 45

Drought resistant

Sampada

Low glycemic index

CR Dhan10

Protein rich

Kenya

Komboka

–

Nepal

Sookha dhan4

Rainfed, drought

Sookha dhan1

Drought

Sookha dhan2

Drought

Nigeria

IAC47

Drought resistant

Ofada

Highlyaromatic

Nigeria

UPIA1

Irrigated, rainfed, tolerance to toxicity

Philippines

NSIC Rc25

Upland

NSIC Rc352

Irrigated, inbred

NSIC Rc390

Saline

Thailand

Dinalaga

Drought resistant

Tanzania

Tai

Rainfed, irrigated

Uganda

Okile

–

Vietnam

08Fan10

Rainfed, lowland

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahajan, R., Kapoor, N. (2019). Molecular Breeding Strategies for Genetic Improvement in Rice (Oryza sativa L.). In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Cereals. Springer, Cham. https://doi.org/10.1007/978-3-030-23108-8_8

Download citation

Publish with us

Policies and ethics