Skip to main content

Quinoa (Chenopodium quinoa Willd.) Breeding

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Cereals

Abstract

Quinoa is native to the Andean Region, with recognized nutritional value and the ability to thrive in marginal agricultural environments. It is a very important alternative crop to face the negative environmental changes that are reducing yield and quality, and causing food insecurity during recent decades. This species has been cultivated in the Andean Region for thousands of years in very marginal environments from sea level in Chile to more than 4000 m elevation in the Peruvian and Bolivian Altiplano. High genetic diversity of quinoa ecotypes made it possible to yield quality grains in soil pH values of 4.5–9.5> in diverse annual rainfall 200–2000 mm, and at very low temperatures in flowering and grain-filling periods, with diseases, insect epidemics and other negative management practices. The recognition of quinoa values since the 1980s has increased significantly the demand and interest from other countries to grow this plant in marginal lands. Cultivation has increased notably in the Andean Region, in North America, Europe, Asia and Africa, with very good agricultural and industrial results. Current wide distribution and planting in large-scale farms have shown limitations because growth conditions are different from those typical in the origin center. High susceptibility to biotic factors (diseases, pests and weeds), low heat tolerance, damage by long photoperiods, lack of appropriate culture technologies for different farming systems, and limitations in food elaboration and industrial uses, are major limitations. These can be overcome with new improved varieties using the highly diverse germplasm and appropriate breeding methodology; and employing appropriate agronomic practices for sustainable production to ensure food security in marginal lands and environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abugoch JLE (2009) Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. In: Steve LT (ed) Advances in food and nutrition research. Academic, Amsterdam, pp 1–31

    Google Scholar 

  • Adolf VI, Shabala S, Andersen MN et al (2012) Varietal differences of quinoa’s tolerance to saline conditions. Plant Soil 357:117–129

    Article  CAS  Google Scholar 

  • Adolf VI, Jacobsen SE, Shabala S (2013) Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environ Exp Bot 92:43–54

    Article  CAS  Google Scholar 

  • Aguilar AP (1980) Identificación de mecanismos de androesterilidad, componentes de rendimiento y contenido proteico en quinua (Chenopodium quinoa Willd.) Universidad Agraria La Molina, Lima, Peru (thesis)

    Google Scholar 

  • Aguilar PC, Jacobsen SE (2003) Cultivation of quinoa on the Peruvian Altiplano. Food Rev Int 19:31–41

    Article  Google Scholar 

  • Ahumada A, Ortega A, Chito D, Benítez R (2016) Saponinas de quinua (Chenopodium quinoa Willd.): un subproducto con alto potencial biológico. Rev Colomb Cienc Quim Farm 45(3):438–469

    Article  Google Scholar 

  • Álvarez-Flores RA (2012) Réponses morphologiques et architecturales du système racinaire au déficit hydrique chez des Chenopodium cultivés et sauvages d’Amérique andine. Université Montpellier 2, Montpellier, France (thesis)

    Google Scholar 

  • Andrade AJ, Babot P, Bertero HD et al (2015) Argentina. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 422–433

    Google Scholar 

  • Apaza V, Cáceres G, Estrada R, Pinedo R (2013) Catálogo de variedades comerciales de quinua en el Perú. FAO and INIA, Peru

    Google Scholar 

  • Aroni JC, Cayoja M, Laime MA (2009) Situación actual al 2008 de la Quinua Real en el altiplano sur de Bolivia. FAUTAPO, La Paz

    Google Scholar 

  • Azurita-Silva A, Jacobsen SE, Razzaghi F et al (2015) Quinoa drought responses and adaptation. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 157–171

    Google Scholar 

  • Balzotti MRB, Thornton JN, Maughan PJ et al (2008) Expression and evolutionary relationships of the Chenopodium quinoa 11S seed storage protein gene. Int J Plant Sci 169:281–291

    Article  CAS  Google Scholar 

  • Barros-Rodriguez M, Cajas-Naranjo M, Nuñez-Torres O et al (2018) In situ rumen degradation kinetics and in vitro gas production of seed, whole plant and stover of Chenopodium quinoa. J Anim Plant Sci 28(1):327–331

    CAS  Google Scholar 

  • Bascuñan-Godoy L, Reguera M, Abdel-Tawab YM, Blumwald E (2016) Water deficit stress-induced changes in carbon and nitrogen partitioning in Chenopodiumm quinoa Willd. Planta 243(3):591–603

    Article  PubMed  CAS  Google Scholar 

  • Bazile D, Martinez E, Fuentes F et al (2015a) Quinoa in Chile. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 401–421

    Google Scholar 

  • Bazile D, Salcedo S, Santivañez T (2015b) Conclusions: challenge, opportunities and threats to quinoa in the face of global change. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 586–589

    Google Scholar 

  • Bazile D, Jacobsen SE, Verniau A (2016a) The global expansion of quinoa: trends and limits. Front Plant Sci 7: 622:1–6. https://doi.org/10.3389/fpls.2016.00622

  • Bazile D, Pulvento C, Verniau A et al (2016b) Worldwide evaluations of quinoa: preliminary results from post international year of quinoa FAO projects in nine countries. Front Plant Sci 7:850. https://doi.org/10.3389/fpls.2016.00850

    Article  PubMed  PubMed Central  Google Scholar 

  • Becker VI, Goessling JW, Duarte B et al (2017) Combined effects of soil salinity and high temperature on photosynthesis and growth of quinoa plants (Chenopodium quinoa). Funct Plant Biol 44(7):665–678

    Article  CAS  PubMed  Google Scholar 

  • Bedoya-Perales N, Pumi G, Mujica A et al (2018) Quinoa expansion in Peru and its implication for land use management. Sustainability 10(532):1–13

    Google Scholar 

  • Bendevis MA, Sun Y, Shabala S et al (2014) Differentiation of photoperiod-induced ABA and soluble sugar responses of two quinoa (Chenopodium quinoa Willd.) cultivars. J Plant Growth Reg 33:562–570

    Article  CAS  Google Scholar 

  • Benlhabib O, Boujartani N, Maugham J et al (2016) Elevated genetic diversity in an F2:6 population of quinoa (Chenopodium quinoa) developed through an inter-ecotype cross. Front Plant Sci 7(1222):1–9

    Google Scholar 

  • Bertero HD (2003) Response of developmental processes to temperature and photoperiod in quinoa (Chenopodium quinoa Willd). Food Rev Int 19:87–97

    Article  Google Scholar 

  • Bertero HD, King RW, Hall AJ (1999) Photoperiod-sensitive developmental phases in quinoa (Chenopodium quinoa Willd.). Field Crop Res 60:231–243

    Article  Google Scholar 

  • Bertero D, De la Vega A, Correa G et al (2004) Genotype and genotype by environment interaction effect for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multi-environment trials. Field Crop Res 89:299–318

    Article  Google Scholar 

  • Bhargava A, Ohri D (2015) Quinoa in the Indian subcontinent. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 511–523

    Google Scholar 

  • Bhargava A, Shukla S, Ohri D (2006) Chenopodium quinoa: an Indian perspective. Ind Crop Prod 23:73–87

    Article  CAS  Google Scholar 

  • Bhargava A, Shukla S, Ohri D (2007) Genetic variability and interrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa Willd). Field Crops Res 101:104–116

    Article  Google Scholar 

  • Biondi S, Ruiz K, Martínez EA et al (2015) Tolerance to saline conditions. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 143–156

    Google Scholar 

  • Bois JF, Winkel T, Lhomme JP et al (2006) Response of some Andean cultivars of quinoa (Chenopodium quinoa Willd.) to temperature: effects on germination, phenology, growth and freezing. Eur J Agron 25:299–308

    Article  Google Scholar 

  • Bojanic A (2011) La Quinua: cultivo milenario para contribuir a la seguridad alimentaria mundial. FAO, Rome

    Google Scholar 

  • Bollaert W (1860) Antiquarian, ethnological and other researchers in New Granada, Ecuador, Peru and Chile. Trübner & Co, London

    Google Scholar 

  • Bonifacio A (1990) Caracteres hereditarios y ligamiento factorial en la quinua (Chenopodium quinoa Willd.). Bolivia Universidad Mayor de San Simon, Cochabamba (thesis)

    Google Scholar 

  • Bonifacio A (1991) Materiales de aislamiento en cruzamientos de la quinua. In: Congreso Internacional sobre Cultivos Andinos, 6to. Quito, Ecuador, pp 67-68

    Google Scholar 

  • Bonifacio A (1995) Interspecific and intergeneric hybridization in chenopod species. Brigham Young University, Provo, Utah (thesis)

    Google Scholar 

  • Bonifacio A (2003) Chenopodium spp. genetic resources, ethnobotany, and geographic distribution. Food Rev Int 19(1):1–7. https://doi.org/10.1081/FRI-120018863

    Article  Google Scholar 

  • Bonifacio A (2004) Genetic variation in cultivated and wild Chenopodium species for quinoa breeding Brigham Young University, Provo, Utah (thesis)

    Google Scholar 

  • Bonifacio A, Mujica A, Álvarez A, Roca W (2004) Mejoramiento genético, germoplasma y producción de semilla. In: Mujica A, Jacobsen S, Izquierdo J, Marathee JP (eds) Quinua: ancestral cultivo andino, alimento del presente y futuro. FAO/UNA/CIP, Santiago, pp 125–187

    Google Scholar 

  • Bonifacio A, Rojas W, Saravia A et al (2006) PROINPA consolida un programa de mejoramiento genético y difusión de semilla de quinua. Informe Compendio 2005–2006. Fundación PROINPA, Cochabamba, pp 65–70

    Google Scholar 

  • Bonifacio A, Aroni G, Villca M (2012) Catálogo etnobotánico de la quinua Real. Cochabamba, Bolivia

    Google Scholar 

  • Bonifacio A, Gómez-Pando L, Rojas W (2015) Quinoa breeding and modern variety development. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 172–191

    Google Scholar 

  • Bosque-Sánchez H, Lemeur R, Van Damme P, Jacobsen SE (2003) Ecophysiological analysis of drought and salinity stress of quinoa. Food Rev Int 19:111–119

    Article  Google Scholar 

  • Bravo R, Catacora P (2010) Granos Andinos: avances, logros y experiencias desarrolladas en quinua. In: Bravo R, Valdivia R, Andrade K et al (eds) Cañihua y kiwicha en el Perú. Ed FIDA – Bioversity International, Rome

    Google Scholar 

  • Bruno MC (2006) A morphological approach to documenting the domestication of Chenopodium in the Andes. In: Zeder MA, Bradley DG, Emshwiller E, Smith BD (eds) Documenting domestication new genetic and archaeological paradigm. University of California Press, Berkeley, pp 32–45

    Google Scholar 

  • Bruno MC (2008) Waranq waranq: ethnobotanical perspectives on agricultural. Intensification in the Titicaca Lake basin (Taraco Peninsula, Bolivia). Washington University, St. Louis MO (thesis)

    Google Scholar 

  • Bruno MC, Whitehead WT (2003) Chenopodium cultivation and the formative period of agriculture at Chiripa, Bolivia. Lat Am Antiq 14(3):339–355

    Article  Google Scholar 

  • Burrieza HP, Koyro HW, Martínez Tosar L et al (2012) High salinity induces dehydrin accumulation in Chenopodium quinoa Willd. Embryos. Plant Soil 354:69–79

    Article  CAS  Google Scholar 

  • Caldwell S (2013) “Superfood” quinoa finds interior Alaska farming fanbase. Alaska Dispatch. Available at: http://www.alaskadispatch.com/article/20130422/superfood-quinoa-finds-interior-alaska-farming-fanbase. Accessed 23 Feb 2018

  • Canahua MA (1977) Observaciones del comportamiento de quinua en sequía. In: Primer Congreso Internacional sobre cultivos andinos. Universidad Nacional San Cristóbal de Huamanga, Instituto Interamericano de Ciencias Agrícolas, Ayacucho, pp 390–392

    Google Scholar 

  • Cardozo A, Tapia M (1979) Valor nutritivo. In: Tapia M, Gandarillas H, Alandia S et al (eds) Quinoa y kañiwa. Cultivos andinos. Editorial IICA, Centro Internacional de Investigaciones para el Desarrollo (CIID), Instituto Interamericano de Ciencias Agrícolas (IICA), Colombia, pp 149–192

    Google Scholar 

  • Carjuzaa P, Castellión M, Distéfano AJ et al (2008) Detection and subcellular localization of dehydrin-like proteins in quinoa (Chenopodium quinoa Willd.) embryos. Protoplasma 233:149–156

    Article  CAS  PubMed  Google Scholar 

  • Carmen M (1984) Aclimatization of quinoa (Chenpodium quinoa Willd.) and canihua (Chenopodium pallidicaule Aellen) to Finland. Ann Agric Fenniae 23:135–144

    Google Scholar 

  • Christensen JL, Ruiz-Tapia EN, Jornsgard B, Jacobsen SE (1999) Fast seed germinating of quinoa (Chenopodium quinoa Willd.) at low temperature. In: COST 814-Workshop: alternative crops for sustainable agriculture, Turku, Finland, pp 220–225

    Google Scholar 

  • Christensen SA, Pratt DB, Pratt C et al (2007) Assessment of genetic diversity in the USDA and CIP-FAO international nursery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers. Plant Genet Res 5:82–95

    Article  CAS  Google Scholar 

  • Christiansen JL, Jacobsen SE, Jørgensen ST (2010) Photoperiodic effect on flowering and seed development in quinoa (Chenopodium quinoa Willd.). Acta Agric Scand Sect B Plant Soil Sci 60:539–544

    Google Scholar 

  • Coles ND, Coleman CE, Christensen SA et al (2005) Development and use of an expressed sequenced tag library in quinoa (Chenopodium quinoa Willd.) for the discovery of single nucleotide polymorphisms. Plant Sci 168(2):439–447

    Article  CAS  Google Scholar 

  • Costa-Tartara SMC, Manifesto MM, Bramardi SJ, Bertero HD (2012) Genetic structure in cultivated quinoa (Chenopodium quinoa Willd.), a reflection of landscape structure in Northwest Argentina. Conserv Genet 13:1027–1038

    Article  Google Scholar 

  • Coulibaly AK, Sangare A, Konate M et al (2015) Assessment and adaptation of quinoa (Chenopodium quinoa Willd.) to the agroclimatic conditions in Mali, West Africa: an example of south-north-south cooperation. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 524–533

    Google Scholar 

  • Danielsen S, Jacobsen SE, Echegaray J, Ames T (2001) Impact of downy mildew on the yield of quinoa. In: CIP Program Report 1999–2000, International Potato Center, Lima, Peru, pp 397–401

    Google Scholar 

  • Danielsen S (2001) Heterothallism in Peronospora farinosa f. sp. chenopodii, the causal agent of downy mildew in quinoa (Chenopodium quinoa). J Basic Microbiol 41(5):305–308

    Article  CAS  PubMed  Google Scholar 

  • Danielsen S (2004) Seed transmission of downy mildew (Peronospora farinosa f. sp. chenopodii) in quinoa and effect of relative humidity on seedling infection. Seed Sci Tech 32:91–98

    Article  Google Scholar 

  • De Santis G, D’Ambrosio T, Rinaldi M, Rascio A (2016) Heritabilities of morphological and quality traits and interrelationships with yield in quinoa (Chenopodium quinoa Willd.) genotypes in the Mediterranean environment. J Cereal Sci 70:177–185

    Article  Google Scholar 

  • Del Castillo C, Winkel T, Mahy G, Bizoux JP (2007) Genetic structure of quinoa (Chenopodium quinoa Willd.) from the Bolivian altiplano as revealed by RAPD markers. Genet Res Crop Evol 54:897–905

    Article  CAS  Google Scholar 

  • Delatorre-Herrera J, Pinto M (2009) Importance of ionic and osmotic components of salt stress on the germination of four quinoa (Chenopodium quinoa Willd.) selections. Chilean J Agric Res 69:477–485

    Article  Google Scholar 

  • Dillehay TD, Rossen J, Andres TC, Williams DE (2007) Preceramic adoption of peanut, squash and cotton in northern Peru. Science 316:1890–1893

    Article  CAS  PubMed  Google Scholar 

  • Dizes J, Bonifacio A (1992) Estudio en microscopia electrónica de la morfología de los órganos de la quinoa (Chenopodium quinoa W.) y de la cañahua (Chenopodium pallidicaule A.) en relación con la resistencia a la sequía. In: D. Morales y J. Vacher (eds.). Actas del VII Congreso Internacional sobre Cultivos Andinos. La Paz, Bolivia. 4-8 de Julio de 1991, pp 69–74

    Google Scholar 

  • Domínguez SS (2003) Quinoa: postharvest and commercialization. Food Rev Int 19:191–201

    Article  Google Scholar 

  • Eathington SR, Crosbie M, Edwards MD et al (2007) Molecular markers in a commercial breeding program. Crop Sci 47:S514–S163

    Article  Google Scholar 

  • Espindola G, Bonifacio A (1996) Catálogo de variedades mejoradas de quinua y recomendaciones para producción y uso de semilla certificada. Publicación conjunta IBTA/DNS Bol 2, La Paz, Bolivia

    Google Scholar 

  • Fairbanks DJ, Burgener KW, Robison LR et al (1990) Electrophoretic characterization of quinoa seed proteins. Plant Breed 104:190–195

    Article  CAS  Google Scholar 

  • FAO (2011) Quinoa: an ancient crop to contribute to world food security. In: 37ava Conferencia de la FAO-Estado Plurinacional de Bolivia, Food and Agriculture Organization, Rome, Italy

    Google Scholar 

  • FAO-WIEWS (2013) Sistema mundial de información y alerta sobre los recursos fitogenéticos para la agricultura y la alimentación. http://apps3.fao.org/wiews

  • FAOSTAT (2018) www.fao.org/statistics/es

    Google Scholar 

  • Franco TL, Hidalgo R (2003) Análisis estadístico de datos de caracterización morfológica de recursos fitogenéticos. Boletín Técnico IPGRI Nº 8, Instituto Internacional de Recursos Fitogenéticos (IPGRI), Cali, Colombia, p 89

    Google Scholar 

  • Fuentes F, Martínez E, De la Torre J et al (2006) Diversidad genética de germoplasma chileno de quinua (Chenopodium quinoa Willd.) usando marcadores de microsatélites SSR. In: Estrella AM, Batallas E, Peralta y Mazón N (eds) Resúmenes XII congreso internacional de cultivos andinos. 24 al 27 de julio de 2006. Quito, Ecuador

    Google Scholar 

  • Fuentes FF, Martínez EA, Hinrichsen PV et al (2009) Assessment of genetic diversity patterns in Chilean quinoa (Chenopodium quinoa Willd.) germplasm using multiplex fluorescent microsatellite markers. Conserv Genet 10:369–377

    Article  CAS  Google Scholar 

  • Fuentes-Bazan S, Mansion G, Borsch T (2012a) Towards a species level tree of the globally diverse genus Chenopodium (Chenopodiaceae). Mol Phyl Evol 62:359–374

    Article  Google Scholar 

  • Fuentes-Bazan S, Uotila P, Borsch T (2012b) A novel phylogeny-based generic classification for Chenopodium sensu lato, and a tribal rearrangement of Chenopodioideae (Chenopodiaceae). Willdenowia 42(1):5–24

    Article  Google Scholar 

  • Gandarillas H (1968) Razas de quinua. Boletín Experimental 34. Ministerio de Agricultura y Asuntos Campesinos. División de Investigaciones Agrícolas, Universo. La Paz, Bolivia

    Google Scholar 

  • Gandarillas H (1969) Esterilidad genética y citoplasmática de la quinua (Chenopodium quinoa Willd.). Turrialba 19:429–430

    Google Scholar 

  • Gandarillas H (1979) Mejoramiento genético. In: Tapia ME (ed) Quinua y kaniwa. Cultivos Andinos, Centro Internacional para el Desarrollo, Bogotá, Colombia, pp 65–82

    Google Scholar 

  • Gandarillas H (1986) Estudio anatómico de los organos de la quinua. Estudio de caracteres correlacionados y sus efectos sobre el rendimiento. Hibridaciones entre especies de la Subsección Cellulata del género Chenopodium. La Paz

    Google Scholar 

  • Gandarillas A, Rojas W, Bonifacio A, Ojeda N (2015) Quinoa in Bolivia: the PROINPA Foundationʼs perspective. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 344–361

    Google Scholar 

  • Garrido M, Silva P, Silva H et al (2013) Evaluación del rendimiento de nueve genotipos de quinua (Chenopodium quinoa Willd.) bajo diferentes disponibilidades hídricas en ambiente mediterraneo. IDESIA(Chile) 31(2):69–76

    Google Scholar 

  • Gawlik-Dziki U, Świeca M, Sułkowski M et al (2013) Antioxidant and anticancer activities of Chenopodium quinoa leaves extracts – in vitro study. Food Chem Toxicol 57:154–160

    Article  CAS  PubMed  Google Scholar 

  • Geerts S, Raes D, García M et al (2008a) Crop water use indicators to quantify the flexible phenology of quinoa (Chenopodium quinoa Willd.) in response to drought stress. Field Crops Res 108:150–156

    Article  Google Scholar 

  • Geerts S, Raes D, García M et al (2008b) Introducing deficit irrigation to stabilize yields of quinoa (Chenopodium quinoa Willd.). Eur J Agron 28:427–436

    Article  Google Scholar 

  • Geerts S, Raes D, García M et al (2008c) Could deficit irrigation be a sustainable practice for quinoa (Chenopodium quinoa Willd.) in the Southern Bolivian Altiplano. Agric Water Manag 95:909–917

    Article  Google Scholar 

  • Gómez L, Eguiluz A (2011) Catalógo del Banco de Germoplasma de Quinua (Chenopodium quinoa Willd), Universidad Nacional Agraria La Molina, p183

    Google Scholar 

  • Gómez-Caravaca A, Iafelice G, Lavini A et al (2012) Phenolic compounds and saponins in quinoa samples (Chenopodium quinoa Willd.) grown under different saline and nonsaline irrigation regimes. J Agric Food Chem 60:4620–4627

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Pando L (2014) Development of improved varieties of native grains through radiation-induced mutagenesis. In: Tomlekova NB, Kozgar MI, Wani MR (eds) Mutagenesis: exploring novel genes and pathways. Wageningen Academic Publishers, Dordrecht, pp 105–123

    Chapter  Google Scholar 

  • Gomez-Pando L (2015) Quinoa breeding. In: Murphy K, Matanguihan J (eds) Quinoa improvement and sustainable production. Wiley Blackwell, Hoboken, pp 87–107

    Chapter  Google Scholar 

  • Gomez-Pando L, Aguilar E (2016) Guía de cultivo de la quinua. FAO, Rome

    Google Scholar 

  • Gomez-Pando L, Eguiluz-de la Barra A (2013) Developing genetic variability of quinoa (Chenopodium quinoa Willd.) with gamma radiation for use in breeding programs. Am J Plant Sci 4:349–355. https://doi.org/10.4236/ajps.2013.42046. http://www.scirp.org/journal/ajps

    Article  Google Scholar 

  • Gomez-Pando L, Alvarez-Castro R, Eguiluz-de la Barra A (2010) Effect of salt stress on Peruvian germplasm of Chenopodium quinoa Willd.: a promising crop. J Agron Crop Sci 196:391–396

    Article  Google Scholar 

  • Gomez-Pando L, Mujica A, Cura E et al (2015) Peru. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. FAO & CIRAD, Rome, pp 378–387

    Google Scholar 

  • Gomez-Pando L, Aguilar E, Ibañez-Tremolada M et al (2017) Introducing quinoa mutant varieties with high water and nutrient use efficiency to the Peruvian highlands. Approaches to improvement of crop genotypes with high water and nutrient use efficiency for water scarce environments. Final Report of a Coordinated Research Project IAEA-TECDOC-1828. International Atomic Energy Agency, Vienna, pp 44–56

    Google Scholar 

  • Gonzalez JA, Konishi Y, Bruno M et al (2011) Interrelationships among seed yield, total protein and amino acid composition of ten quinoa (Chenopodium quinoa) cultivars from two different agroecological regions. J Sci Food Agric 92:1222–1229

    Article  PubMed  CAS  Google Scholar 

  • Groot M (2004) Phyto-estrogenic activity of protein-rich feeds for pigs. Project No. 801 71 947 01. RIKILT– Institute of Food Safety, Wageningen

    Google Scholar 

  • Hariadi Y, Marandon K, Tian Y et al (2011) Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J Exp Bot 62:185–193

    Article  CAS  PubMed  Google Scholar 

  • Hong SY, Cheon KS, Yoo KO et al (2017) Complete chloroplast genome sequences and comparative analysis of Chenopodium quinoa and C album. Front Plant Sci 8(1696):1–12

    Google Scholar 

  • Ichuta F, Artiaga E (1986) Relación de géneros en la producción y en la Organización Social en Comunidades de Apharuni, Totoruma, Yauricani-Ilave. Informe para optar el grado de Bachiller en Trabajo Social, Puno, pp 15–17

    Google Scholar 

  • Ignacio J, Vera R (1976) Observaciones sobre la intensidad de floración durante las diferentes horas del día efectuados en quinua Chenopodium quinoa Willd. Anales de la II Convención Internacional de Quenopodiáceas quinua-cañihua, Potosí

    Google Scholar 

  • Iliadis C, Karyotis T, Mitsibonas T (1997) Research on quinoa (Chenopodium quinoa) and amaranth (Amaranthus caudatus) in Greece. In: Proceedings of COST-Workshop., 24–25/10 1997 CPRO-DLO Wageningen, The Netherlands, pp 85–91

    Google Scholar 

  • Jacobsen SE, Quispe H, Mujica A (2001) Quinoa: an alternative crop for saline in the Andes. In: Scientist and Farmer – Partners in Research for the 21st Century. CIP Program Report 1999–2000; pp 403–408

    Google Scholar 

  • Jacobsen SE (2003) The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev Int 19(1/2):167–177

    Article  Google Scholar 

  • Jacobsen SE (2012) What is wrong with sustainability of quinoa production in southern Bolivia – a reply to Winkel et al. J Agron Crop Sci 198(4):320–323

    Article  Google Scholar 

  • Jacobsen SE (2015) Adaptation and scope for quinoa in northern latitudes of Europe. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 436–446

    Google Scholar 

  • Jacobsen SE, Jørgensen I, Stølen O (1994) Cultivation of quinoa (Chenopodium quinoa) under temperate climatic conditions in Denmark. J Agric Sci 122:47–52

    Article  Google Scholar 

  • Jacobsen SE, Nuñez N, Stolen O, Mujica A (1999) Que sabemos sobre la resistencia de la quinua a la sequía. In: Jacobsen SR, Mujica A (eds) Fisiología de la resistencia a sequía en quinua (Chenopodium quinoa Willd.). CIP, Lima, pp 65–69

    Google Scholar 

  • Jacobsen SE, Mujica A, Jensen CR (2003) The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev Int 19:99–109

    Article  Google Scholar 

  • Jacobsen SE, Monteros C, Christiansen JL et al (2005) Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages. Eur J Agron 22:131–139

    Article  Google Scholar 

  • Jacobsen SE, Monteros C, Corcuera LJ (2007) Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.). Eur J Agron 26:471–475

    Article  Google Scholar 

  • Jacobsen SE, Liu F, Jensen CR (2009) Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd). Sci Horticul 122:281–287

    Article  CAS  Google Scholar 

  • Jacobsen SE, Christiansen JL, Rasmussen J (2010) Weed harrowing and inter-row hoeing in organic grown quinoa (Chenopodium quinoa Willd). Outlook Agric 39:223–227

    Article  Google Scholar 

  • Jarvis DE, Kopp OR, Jellen EN et al (2008) Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd). J Genet 87:39–51

    Article  CAS  PubMed  Google Scholar 

  • Jarvis DE, Ho YS, Lightfoot DJ et al (2017) The genome of Chenopodium quinoa. Nature 542:307–312. https://doi.org/10.1038/nature21370

    Article  CAS  PubMed  Google Scholar 

  • Jellen EN, Maughan PJ, Fuentes F, Kolano BA (2015) Botany, phylogeny and evolution. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 12–23

    Google Scholar 

  • Jensen CR, Jacobsen SE, Andersen MN et al (2000) Leaf gas exchange and water relation characteristics of field quinoa (Chenopodium quinoa Willd.) during soil drying. Eur J Agron 13:11–25

    Article  Google Scholar 

  • Johnson DL (1990) New grains and pseudograins. In: Janick J, Simon JE (eds) Advances in new crops, Timber Press, Portland, pp 122–127. Available at: <http://www.hort.purdue.edu/newcrop/proceedings1990/v1-122.html>. Accessed 23 Feb 2018

  • Karyotis T, Iliadis C, Noulas C, Mitsibonas T (2003) Preliminary research on seed production and nutrient content quinoa varieties in a saline-sodic soil. J Agron Crop Sci 189:402–408

    Article  Google Scholar 

  • Kitz L (2008) Evaluation of downy mildew (Peronospora farinosa f. sp. chenopodii) resistance among quinoa genotypes and investigation of P. farinosa growth using scanning electron microscopy. Brigham Young University, Provo, Utah (thesis)

    Google Scholar 

  • Kolano B, Gardunia BW, Michalska M et al (2011) Chromosomal localization of two novel repetitive sequences isolated from the Chenopodium quinoa Willd. Genome 54(9):710–717

    Article  CAS  PubMed  Google Scholar 

  • Kolano B, Siwinska D, Gomez-Pando L et al (2012) Genome size variation in Chenopodium quinoa (Chenopodiaceae). Plant Syst Evol 298:251–255

    Article  CAS  Google Scholar 

  • Kolano B, McCann J, Orzechowska M et al (2016) Molecular and cytogenetic evidence for an allotetraploid origin of Chenopodium quinoa and C. berlandieri (Amaranthaceae). Mol Phylogen Evol 100:109–123

    Article  CAS  Google Scholar 

  • Koyro HW, Eisa SS (2008) Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd. Plant Soil 302:79–90

    Article  CAS  Google Scholar 

  • Langlie B, Hastorf CA, Bruno MC et al (2011) Diversity in Andean Chenopodium domestication: describing a new morphological type from La Barca, Bolivia 1300–1250 B.C. J Ethnobiol 31(1):72–88

    Article  Google Scholar 

  • Latchman RR (1936) La agricultura precolombina en Chile y los países vecinos. Ediciones de la Universidad de Chile, Santiago

    Google Scholar 

  • León R (2014) Respuesta del Cultivo de Quínua (Chenopodium quinoa Willd.) Línea Mutante ‘La Molina 89-77’ a Tres Regímenes de Riego por Goteo en Condiciones de La Molina, p 93

    Google Scholar 

  • Leon J (2004–2005) Hibridación y comparación de la F1 F1 con sus progenitores en tres cultivares de quinua (Chenopodium quinoa Willd.) en Puno, Perú. www.monografias.com/...quinua.../mejoramiento-genetico-quinua-hibrid

  • Lescano RJL (1980) Avances en la genética de la quinua. In: Reunión de genética y fitomejoramiento de la quinua. Genética y fitomejoramiento de la quinua. Universidad Nacional Técnica del Altiplano, Instituto Boliviano de Tecnología Agropecuaria, IICA, Centro Internacional de Investigación para el Desarrollo Puno, Peru, pp 81–89

    Google Scholar 

  • Lescano JL (1994) Mejoramiento y fisiologia de cultivos andinos. Cultivos andinos en el Perú. CONCYTEC, Proyecto FEAS, Lima

    Google Scholar 

  • Liu GT, Zheng Y, Chen WH et al (1999) Effect of daidzein fed to pregnant cows on milk production and the levels of hormones in colostrums. J Nanjing Agric Univ 22:69–72

    Google Scholar 

  • Liu J, Wang R, Liu W et al (2018) Genome-wide characterization of heat – shock protein 70s from Chenopodium quinoa and expression analyses of Cqhsp 70s in response to drought stress. Genes 35:1–5

    Article  CAS  Google Scholar 

  • López ML (2012) Estudio de macro y micro restos de quinoa de contextos arqueológicos del último milenio en dos regiones puneñas. Facultad de Filosofía y Humanidades, Universidad Nacional de Córdova (thesis)

    Google Scholar 

  • López ML, Nielsen A (2012) Macrorrestos de Chenopodium quinoa Willd. en la plaza de Laqaya (Nor Lipez, Potosi, Bolivia). Rev Intersec Antropol 14:295–300

    Google Scholar 

  • Lumbreras LG, Kaulicke P, Santillana JI, Espinoza W (2008) Economía prehispánica (Tomo 1). In: Contreras C (ed) Compendio de historia economía del Perú. Banco Central de Reserva del Perú. Instituto de Estudios Peruanos, Lima, pp 53–77

    Google Scholar 

  • Lutz M, Bascuñan-Godoy (2017) The revival of quinoa: a crop for health. In: Waisundara V, Shiomi N (eds) Superfood and functional food-an overview of their processing and utilization. In Tech, pp 37–54. ISBN 978-953-51-5020-6

    Google Scholar 

  • Lutz M, Martinez A, Martinez EA (2013a) Daidzein and genistein contents in seeds of quinoa (Chenopodium quinoa Willd.) from local ecotypes grown in arid Chile. Indust Crop Prod 49:117–121

    Article  CAS  Google Scholar 

  • Lutz M, Martínez A, Vega-Gálvez A et al (2013b) Isoflavones content of quinoa grains from local ecotypes grown in different conditions. Ann Nutri Metabol 63:1582

    Google Scholar 

  • Maluszynski M, Szarejko I, Bhatia C et al (2009) Methodologies for generating variability. In: Ceccarelli S, Guimaraes EP, Weltzien E (eds) Plant breeding and farmer participation. Rome, FAO, pp 159–194

    Google Scholar 

  • Martínez EA, Veas E, Jorquera C et al (2009) Re-introduction of quinoa into arid Chile: cultivation of two lowland races under extremely low irrigation. J Agron Crop Sci 195:1–10

    Article  Google Scholar 

  • Mason SL, Stevens MR, Jellen EN et al (2005) Development and use of microsatellite markers for germplasm characterization in quinoa (Chenopodium quinoa Willd.). Crop Sci 45:1618–1630

    Article  CAS  Google Scholar 

  • Mastebroek HD, Limburg H (1997) Breeding harvest security in Chenopodium quinoa. In: Proceedings of the COST 814 workshop on small grains cereals and pseudo-cereals. Copenhagen, Denmark, pp 79–86, 22–24 February 1996

    Google Scholar 

  • Mastebroek HD, van Loo EN, Dostra O (2002) Combining ability for seed yield traits of Chenopodium quinoa breeding lines. Euphytica 125, pp 427–432

    Article  CAS  Google Scholar 

  • Mastebroek HD, Van Loo R (2000) Breeding of quinoa – state of the art. In: Parente G, Frame J (eds) Abstracts/Proceedings of COST 814 conference, crop development for cool and wet regions of Europe; 2000 May 10–13; Pordenone, Italy. Office of Official Publications of the European Communities, Luxembourg, pp 491–496

    Google Scholar 

  • Matanguihan JB, Maughan PJ, Jellen EN, Kolano B (2015) Quinoa cytogenetics, molecular genetics and diversity. In: Murphy KM, Matanguihan JB (eds) Quinoa: improvement and sustainable production. Wiley-Blackwell, Hoboken, pp 109–123

    Chapter  Google Scholar 

  • Maugham PJ, Bonifacio A, Coleman CE, Jellen EN et al (2007) Quinoa: Chenopodium quinoa. In: Kole S (ed) Genome mapping and molecular breeding in plants. Volume 3 pulses, sugar and tuber crops. Springer, Berlin, pp 154–158

    Google Scholar 

  • Maughan PJ (2006) Molecular and cytological characterization of ribosomal RNA genes in Chenopodium quinoa and Chenopodium berlandieri. Genome 49(7):825–839

    Article  CAS  PubMed  Google Scholar 

  • Maughan PJ, Bonifacio A, Jellen EN et al (2004) A genetic linkage map of quinoa (Chenopodium quinoa) based on AFLP, RAPD, and SSR markers. Theor Appl Genet 109:1188–1195

    Article  CAS  PubMed  Google Scholar 

  • Maughan PJ, Turner TB, Coleman CE et al (2009) Characterization of salt overly sensitive 1 (SOS1) gene homoeologs in quinoa (Chenopodium quinoa Willd.). Genome 52:647–657

    Article  CAS  PubMed  Google Scholar 

  • Maughan PJ, Smith SM, Rojas-Beltran JA et al (2012) Single nucleotide polymorphism identification, characterization, and linkage mapping in quinoa. Plant Genome 5:114–125

    Article  CAS  Google Scholar 

  • Mazón N, Peralta E, Monar C et al (2007) Pata de Venado (Taruka chaki) nueva variedad de quinua precoz y de grano dulce. Plegable No. 261. Programa Nacional de Leguminosas y Granos Andinos. Estación Experimental Santa Catalina. INIAP. Quito, Ecuador

    Google Scholar 

  • Meehl GA et al. (2007) Global climate projections. In Climate change 2007: the physical science basis. Contributionof Working Group I to the Fourth Assessment Report ofthe Intergovernmental Panel on Climate Change (eds S.Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis,K. B. Averyt, M. Tignor & H. L. Miller).Cambridge, UK: Cambridge University Press, pp 747–846

    Google Scholar 

  • Mendoza V (2013) Comparativo de Accesiones de quinua (Chenopodium quinoa Willd.) en condiciones de Costa Central. Facultad de Agronomía. Universidad Nacional Agraria La Molina. Lima, Peru (thesis)

    Google Scholar 

  • Michel AJ (2008) Estudio de suelos del área productora de quinua real, altiplano sur Boliviano. Fundación AUTAPO, Programa Quinua-Altiplano Sucre, Bolivia. www.infoquinua.bo

  • Morales AJ, Bajgain P, Garver Z et al (2011) Physiological responses of Chenopodium quinoa to salt stress. Int J Plant Phys Biochem 3:219–232

    CAS  Google Scholar 

  • Morales AJ, Zurita-Silva A, Maldonado J, Silva H (2017) Transcriptional responses of Chilean quinoa (Chenopodium quinoa Willd.) under water deficit conditions uncover ABA-independent expression patterns. Front Plant Sci 8:216. https://doi.org/10.3389/fpls.2017.00216

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreno C, Seal CE, Papenbrock J (2017) Seed priming improves germination in saline conditions for Chenopodium quinoa and Amaranthus caudatus. J Agron Crop Sci 204:40–48

    Article  CAS  Google Scholar 

  • Morillo-Coronado AC, Castro-Roberto MA, Morillo-Coronado Y (2017) Characterization of genetic diversity of a collection of quinua (Chenopodium quinoa Willd.). Biotechnol Sector Agropec Agroind 15(2):49–56

    Google Scholar 

  • Mota C, Santos M, Mauro R et al (2016) Protein content and aminoacid profile of pseudocereals. Food Chem 193:55–61

    Article  CAS  PubMed  Google Scholar 

  • Mujica A (1992) Granos y leguminosas andinas. In: Hernández J, Bermejo J, León J (eds) Cultivos marginados: otra perspectiva de 1492. Rome, FAO, pp 129–146

    Google Scholar 

  • Mujica A, Jacobsen SE (2000) Agrobiodiversidad de las Aynokas de quinua (Chenopodium quinoa Willd.) y la seguridad alimentaria. In: Felipe-Morales C, Manrique A, editors. Proc. Seminario Taller Agrobiodiversidad en la Región Andina y Amazónica. 23-25 Noviembre 1988. Lima: NGO- CGIAR, pp 151–156

    Google Scholar 

  • Mujica A, Jacobsen SE (2005) La quinua (Chenopodium quinoa Willd.) y sus parientes silvestres. In: Moraes MR, Øllgaard B, Kvist LP et al (eds) Botánica económica de los Andes Centrales. Editores Universidad Mayor de San Andrés, La Paz, pp 449–457

    Google Scholar 

  • Mujica A, Jacobsen SE, Izquierdo J, Marathee JP (2001) Resultados de la prueba americana y europea de quinua. FAO/UNA/CIP, Puno

    Google Scholar 

  • Murray A (2005) Chenopodium domestication in the south central Andes: confirming the presence of domesticates at Jiskairumoko (Late Archaic-Formative), Peru. Master of Arts Anthropology, California State University, Fullerton (thesis)

    Google Scholar 

  • Nguyen LV (2016) Genetic variation in response to salt stress of quinoa grown under controlled and field conditions. Int J Adv Sci Eng Inform Technol 6(2):233–238

    Article  Google Scholar 

  • Nolasco O, Cruz W, Santa Cruz C, Gutiérrez A (2013) Evaluation of the DNA polymorphism of six varieties of Chenopodium quinoa Willd., using AFLP. Biologist (Lima) 11(2):277–286

    Google Scholar 

  • Nowak V, Du J, Charrondiere UR (2016) Assesment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem 193:47–54

    Article  CAS  PubMed  Google Scholar 

  • Nuñez L (1974) In: Universidad del Norte (ed) La Agricultura prehistórica en los andes meridionales. Editorial Orbe, Santiago

    Google Scholar 

  • Ochoa J, Frinking HD, Jacobs T (1999) Postulation of virulence groups and resistance factors in the quinoa/downy mildew pathosystem using material from Ecuador. Plant Pathol 48(3):425–430

    Article  Google Scholar 

  • Orsini F, Accorsi M, Gianquinto G et al (2011) Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halophytism. Funct Plant Biol 38:1–14

    Article  CAS  Google Scholar 

  • Oyoo M, Khaemba J, Githiri M, Ayiecho P (2015) Production and utilization of quinoa (Chenopodium quinoa Willd.) outside its traditional growing areas: a case of Kenya. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 534–548

    Google Scholar 

  • Pasko P, Zagrodzki P, Barton H et al (2010) Effect of quinoa seeds (Chenopodium quinoa) in diet on some biochemical parameters and essential elements in blood of high fructose-fed rats. Plant Foods Human Nutr 65:333–338

    Article  CAS  Google Scholar 

  • Pearsall DM (1980) Ethnobotanical report: plant utilization at a hunting base camp. In: Rick JW (ed) Prehistoric hunters of the high Andes. Academic, New York, pp 191–231

    Google Scholar 

  • Pearsall DM (1989) Adaptation of prehistoric hunter-gatherers in the high Andes: the changing role of plant resources. In: Harris D, Hillman GC (eds) Foraging and farming. Unwin Hyman, London, pp 318–332

    Google Scholar 

  • Pearsall DM (2008) Plant domestication and the shift to agriculture in the Andes. In: Silverman H, Isbell WH (eds) Handbook of South American archeology. Springer Science + Business Media, New York, pp 105–120

    Chapter  Google Scholar 

  • Peralta E, Nelson Mason O (2015) Quinoa in Ecuador. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 388–400

    Google Scholar 

  • Pereda J (2016) Calibración para determinar composición proximal de la quinua (Chenopodium quinoa Willd.) usando la espectroscopía de transmitancia en el infrarrojo cercano. Facultad de Industrias Alimentarias. Universidad Nacional Agraria La Molina, Lima-Peru (thesis)

    Google Scholar 

  • Peterson A, Jacobsen SE, Bonifacio A, Murphy K (2015a) A crossing method for quinoa. Sustainability 7:3230–3243. www.mdpi.com/journal/sustainability

    Article  CAS  Google Scholar 

  • Peterson AJ, Adam J, Murphy K (2015b) Quinoa in the United States of America and Canada. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. FAO & CIRAD, Rome, pp 549–562

    Google Scholar 

  • Piva G, Basse C, Mehinagic E (2015) Quinoa DʼAnjou: the beginning of a French quinoa sector. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 447–453

    Google Scholar 

  • Planella MT, Lopez ML, Bruno MC (2015) Domestication and prehistoric distribution. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 29–41

    Google Scholar 

  • PROINPA. http://www.proinpa.org (accessed February 2018)

  • Pulvento C, Riccardi M, Biondi S et al (2015) Quinoa in Italy: research and perspectives. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 454–465

    Google Scholar 

  • Quispe L (2015) Evaluación del potencial de rendimiento y calidad de líneas mutantes de quinua (Chenopodium quinoa Willd.) var. Pasankalla en condiciones de Costa Central. Universidad Nacional Agraria La Molina (thesis)

    Google Scholar 

  • Raney JA, Reynolds DJ, Elzinga DB et al (2014) Transcriptome analysis of drought induced stress in Chenopodium quinoa. Am J Plant Sci 5:338–357

    Article  CAS  Google Scholar 

  • Razzaghi F, Ahmadi SH, Adolf VI et al (2011) Water relations and transpiration of quinoa (Chenopodium quinoa Willd.) under salinity and soil drying. J Agron Crop Sci 197:348–360

    Article  Google Scholar 

  • Razzaghi F, Ahmadi SH, Jacobsen SE et al (2012) Effects of salinity and soil-drying on radiation use efficiency, water productivity and yield of quinoa (Chenopodium quinoa Willd.). J Agron Crop Sci 198:173–184

    Article  CAS  Google Scholar 

  • Rea J (1969) Biología floral de la quinua (Chenopodium quinoa). Turrialba 19:91–96

    Google Scholar 

  • Reichert RD, Tatarynovich JT, Tyler R (1986) Abrasive dehulling of Quinoa (Chenopodium quinoa): effect on saponin content as determined by an adapted hemolitic assay. Cereal Chem 63(6):471–475

    CAS  Google Scholar 

  • Repo-Carrasco R, Espinoza C, Jacobsen SE (2003) Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev Int 19:179–189

    Article  Google Scholar 

  • Reynolds DJ (2009) Genetic dissection of triterpenoid saponin production in Chenopodium quinoa using microarray analysis. Brigham Young University. Provo, Utah (thesis)

    Google Scholar 

  • Risi Carbone JJM, Galwey NW (1984) The Chenopodium grains of the Andes: Inca crops for modern agriculture. Adv Appl Biol 10:145–216

    Google Scholar 

  • Risi CJ, Galwey NW (1989) The pattern of genetic diversity in the Andean grain crop quinoa (Chenopodium quinoa Willd). II. Multivariate methods. Euphytica 41, pp 135–145

    Article  Google Scholar 

  • Rocha JES (2011) Controle genético de caracteres agronómicos em quinoa (Chenopodium quinoa Willd.). Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília, DF, Brazil (thesis)

    Google Scholar 

  • Rodríguez MF, Rúgolo de Agrasar ZE, Aschero CA (2006) El uso de las plantas en unidades domésticas del Sitio arqueológico Punta de la Peña 4, Puna Meridional Argentina. Chungara Rev Antropol Chilena 38(2):257–271

    Google Scholar 

  • Rojas W, Pinto M (2015) Ex situ conservation of quinoa: the Bolivian experience. In: Murphy K, Matanguiban J (eds) Quinoa: improvement and sustainable production. Wiley, Blackwel, Hoboken, pp 125–160

    Chapter  Google Scholar 

  • Rojas W, Pinto M, Bonifacio A, Gandarillas A (2010) Banco de germoplasma de granos andinos. In: Rojas W, Pinto M, Soto JL et al (eds) Granos andinos: avances, logros y experiencias desarrolladas en quinua, cañahua y amaranto en Bolivia. Bioversity International, Rome, pp 24–38

    Google Scholar 

  • Rojas W, Pinto M, Alanoca C et al (2015) Quinoa genetic resources and ex situ conservation. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 56–82

    Google Scholar 

  • Rojas W, Soto JL, Carrasco E (2004) Study on the social, environmental and economic impacts of quinoa promotion in Bolivia. PROIMPA Foundation, La Paz, Bolivia

    Google Scholar 

  • Rojas-Beltrán J, Bonifacio A, Botani G et al (2010) Obtención de nuevas variedades de quinua frente a los efectos del cambio climático. Informe Compendio 2007–2010. Fundación PROINPA, Cochabamba, pp 67–69

    Google Scholar 

  • Rosa M, Hilal M, González JA, Prado FE (2009) Low-temperature effect on enzyme activities involved in sucrose–starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings. Plant Physiol Biochem 47:300–307

    Article  CAS  PubMed  Google Scholar 

  • Ruas PM, Bonifacio A, Ruas CF et al (1999) Genetic relationship among 19 accessions of six species of Chenopodium L. by random amplified polymorphic DNA fragments (RAPD). Euphytica 105:25–32

    Article  Google Scholar 

  • Ruiz R (2002) Micropropagación de germoplasma de quinua (Chenopodium quinoa Willd.). Universidad Nacional Agraria La Molina. Lima, Peru (thesis)

    Google Scholar 

  • Ruiz K, Biondi S, Oses R et al (2014) Quinoa biodiversity and sustainability for food security under climate change. A review. Agron Sustain Dev 34:349–359

    Article  Google Scholar 

  • Ruiz-Carrasco KB, Antognoni F, Coulibaly AK et al (2011) Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Phys Biochem 49:1333–1341

    Article  CAS  Google Scholar 

  • Sánchez V (2015) Identificación preliminar de líneas mutantes de quinua (Chenopodium quinoa Willd.) con mayor eficiencia en el uso de nitrógeno. Universidad Nacional Agraria La Molina Lima. Peru (thesis)

    Google Scholar 

  • Saravia R (1991) La androesterilidad en quinua y forma de herencia. Bolivia Universidad Mayor de San Simón, Cochabamba (thesis)

    Google Scholar 

  • Saravia R, Plata G, Gandarillas A (2014) Plagas y enfermedades en el cultivo de quinua. Fundación PROINPA/FAO, Cochabamba/Rome

    Google Scholar 

  • Schmöckel S, Lightfoot DJ, Razali R et al (2017) Identification of putative transmembrane proteins involved in salinity tolerance in Chenopodium quinoa by integrating physiological data, RNA seq, and SNP analyses. Front Plant Sci 8:1023. https://doi.org/10.3389/fpls.2017.01023

    Article  PubMed  PubMed Central  Google Scholar 

  • Sederberg MC (2008) Physical mapping of ribosomal RNA genes in new world members of the genus Chenopodium using fluorescence in situ hybridization. Brigham Young University Provo, Utah (thesis)

    Google Scholar 

  • Shabala S, Mackay A (2011) Ion transport in halophytes. Adv Bot Res 57:151–199

    Article  CAS  Google Scholar 

  • Shabala L, Mackay A, Tian Y et al (2012) Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa. Phys Plant 146:26–38

    Article  CAS  Google Scholar 

  • Shu QY, Forster BP, Nakagawa H (2012) Principles and applications of plant mutation breeding. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture International Atomic Energy Agency, Vienna, pp 301–325

    Chapter  Google Scholar 

  • Siener R, Honow R, Seidler A et al (2006) Oxalate contents of species of the Polygonaceae, Amaranthaceae and Chenopodiaceae families. Food Chem 98:220–224

    Article  CAS  Google Scholar 

  • Sigsgaard L, Jacobsen SE, Christiansen JL (2008) Quinoa, Chenopodium quinoa, provides a new host for native herbivores in northern Europe case studies of the moth, Scrobipalpa atriplicella, and the tortoise beetle, Cassida nebulosa. J Insect Sci 8(50):1–4

    Article  Google Scholar 

  • Silvestri V, Gil F (2000) Alogamia en quinua. Tasa en Mendoza (Argentina). Rev Facul Cienc Agrar, Universidad Nacional de Cuyo 32(1):71–76

    Google Scholar 

  • Simmonds NW (1965) The grain chenopods of the tropical American highlands. Econ Bot 19:223–235

    Article  Google Scholar 

  • Simmonds NW (1971) The breeding system of Chenopodium quinoa. I Male sterility Hered 27:73–82

    Google Scholar 

  • Smith BD (1992) Rivers of change: essays on early agriculture in eastern North America. Smithsonian Institution, Washington, DC

    Google Scholar 

  • Soplín B (2009) Estudio preliminario para la inducción de callos a partir del cultivo in vitro de anteras de Chenopodium quinoa Willd. Facultad de Ciencias. Universidad Nacional Agraria La Molina, Lima, Peru (thesis)

    Google Scholar 

  • Souza FFJ (2013) Physiological quality of quinoa (Chenopodium quinoa Willd.) seeds stored at different environments and containers. Universidade Estadual de Goiás, Anápolis, GO Brazil (thesis)

    Google Scholar 

  • Spehar CR (2001) Cruzamentos naturais e variabilidade genética em quinoa (Chenopodium Quinoa Willd.). In: Simpósio de Recursos Genéticos para a América Latina e Caribe, 3, Londrina, PR, Brasília, DF, Embrapa Recursos Genéticos e Biotecnologia. (available in cd)

    Google Scholar 

  • Spehar CR, Santos RLB, Nasser LCB (2003) Diferenças entre Chenopodium quinoa e a planta daninha Chenopodium album. Planta Daninha 21:487–491

    Article  Google Scholar 

  • Spehar CR, da Silva Rocha JE, Quadros W et al (2015) Advances and challenges for quinoa production and utilization in Brazil. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 562–585

    Google Scholar 

  • Stevens MR, Coleman CE, Parkinson SE et al (2006) BAC library and its use in identifying genes encoding seed storage proteins. Theor Appl Genet 112:1593–1600

    Article  CAS  PubMed  Google Scholar 

  • Swenson EM (2006) Genetic diversity of Bolivian Peronospora farinosa f. sp. chenopodii (downy mildew) and quinoa’s resistance response. Brigham Young University, Provo, Utah (thesis)

    Google Scholar 

  • Tamulonis JP (1989) In vitro callus production and shoot organogenesis in Chenopodium quinoa Willd. Colorado State University, Fort Collins (thesis)

    Google Scholar 

  • Tapia M (1979) Historia y distribución geográfica. In: Tapia M (ed) Quinua y Kaniwa. Cultivos Andinos. Centro Internacional de Investigaciones para el Desarrollo (CIID), Instituto Interamericano de Ciencias Agricolas (IICA), Bogotá, pp 11–19

    Google Scholar 

  • Tapia ME, Mujica SA, Canahua A (1980) Origen, distribución geográfica y sistemas de producción en quinua. In: Primera reunión sobre genética y fitomejoramiento de la quinua. Universidad Técnica del Altiplano, Instituto Boliviano de Tecnología Agropecuaria, Instituto Interamericano de Ciencias Agrícolas, Centro de Investigación Internacional para el Desarrollo, Puno, pp A1–A8

    Google Scholar 

  • Uhle M (1919) La arqueología de Arica y Tacna. Bol Soc Ecuat Estud Histór Am 3(7/8):1–48

    Google Scholar 

  • Varriano-Marston E, de Francisco A (1984) Ultraestructure of quinoa fruit (Chenopodium quinoa Willd.). Food Microstruct 3:165

    Google Scholar 

  • Vega-Gaávez A, Miranda M, Vergara J et al (2010) Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.) an ancient Andean grain: a review. J Sci Food Agric 90:25–41

    Google Scholar 

  • Vía y Rada Fernández N (2015) Determinación de la diversidad genética de 172 accesiones de la Colección Nacional de Chenopodium quinoa Willd. Quinua mediante marcadores microsatélites. Universidad Ricardo Palma, Facultad de Ciencias Biológicas, Escuela Profesional de Biología, Lima, Peru (thesis)

    Google Scholar 

  • Von Baer I, Bazile D, Martínez E (2009) Cuarenta años de mejoramiento de quinoa (Chenopodium quinoa Willd.) en La Araucanía: origen de La Regalona-B. Rev Geogr Valpso (on line), pp 34–44, N° 42/2009 ISSN 0718 – 9877

    Google Scholar 

  • Ward SM (1998) A new source of restorable cytoplasmic male sterility in quinoa. Euphytica 101:157–163

    Article  Google Scholar 

  • Ward SM, Johnson D (1993) Cytoplasmic male sterility in quinoa. Euphytica 66:217–223

    Article  Google Scholar 

  • Ward SM, Johnson D (1994) A recessive gene determining male sterility in quinoa. J Hered 8:231–233

    Article  Google Scholar 

  • Weber J, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388–396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitehead WT (2007) Exploring the Wild and Domestic: Paleoethnobotany at Chriripa, a Formative Site in Bolivia. Dissertation, University of California, Berkeley.

    Google Scholar 

  • Wilson HD (1990) Crop/weed gene flow: Chenopodium quinoa Willd and C. berlandieri Moq. Theor Applied Genet 86, pp 642–648

    Google Scholar 

  • Wilson H (1981) Domesticated Chenopodium of the Ozark Bluff dwellers. Econ Bot 42(4):464–477

    Google Scholar 

  • Wilson H (1988a) Allozyme variation and morphological relationships of Chenopodium hircinum (s.l.). Syst Bot 13(2):215

    Article  Google Scholar 

  • Wilson HD (1988b) Quinoa biosystematics I: domesticated populations. Econ Bot 42:461–477

    Article  Google Scholar 

  • Wilson H (1988c) Quinoa biosystematics II: free-living populations. Econ Bot 42(4):478–494

    Article  Google Scholar 

  • Wilson H, Manhart J (1993) Crop/weed gene flow: Chenopodium quinoa Willd. and C. berlandieri Moq. Theor Appl Genet 86(5):642–648

    Article  CAS  PubMed  Google Scholar 

  • Wilson C, Read JJ, Abo-Kassem E (2002) Effect of mixed salt salinity on growth and ion relations of a quinoa and a wheat variety. J Plant Nutr 25:2689–2704

    Article  CAS  Google Scholar 

  • Winkel T, Alvarez-Flores R, Bommel P et al (2015) The southern Altiplano of Bolivia. In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Rome, FAO & CIRAD, pp 362–377

    Google Scholar 

  • Woldemichael GM, Wink M (2001) Identification and biological activities of triterpenoid saponins from Chenopodium quinoa. J Agric Food Chem 49:2327–2332

    Article  CAS  PubMed  Google Scholar 

  • Wright KH, Huber KC, Fairbanks D et al (2002) Isolation and characterization of Atriplex hortensis and sweet Chenopodium quinoa starches. Cereal Chem 79:715–719

    Article  CAS  Google Scholar 

  • Yang A, Akhtar SS, Iqbal S et al (2018) Saponin seed priming improves salt tolerance in quinoa. J Agro Crop Sci 204:31–39

    Article  CAS  Google Scholar 

  • Yasui Y, Hirakawa H, Oikawa T et al (2016) Draft genome sequence of an inbred line of Chenopodium quinoa, an allotetraploid crop with great environmental adaptability and outstanding nutritional properties. DNA Res 23:535–546. https://doi.org/10.1093/dnares/dsw037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yazar A, Incekaya C, Sezen SM, Jacobsen SE (2015) Saline irrigation of quinoa (Chenopodium quinoa) under Mediterranean conditions. Crop Pasture Sci 66(10):993–1002

    Article  CAS  Google Scholar 

  • Zhang R, Han Z, Chen J, Zhang C (1995) Daidzein diet promotes mammary gland development and lactation in pregnant rat. Dong Wu Xue Bao 41:414–419

    CAS  Google Scholar 

  • Zhang T, Gu M, Liu Y et al (2017) Development of novel InDel markers and genetic diversity in Chenopodium quinoa through whole-genome re-sequencing. BMC Genomics 18(685):1–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luz Rayda Gomez-Pando .

Editor information

Editors and Affiliations

Appendices

Appendices

7.1.1 Appendix I: Research Institutes Relevant to Quinoa

Institution

Specialization and research activities

Contact information and website

Instituto Nacional de Innovación Agraria (INIA) PERU

Plant breeding and agronomy

rsanchez@inia.gob.pe

Universidad Nacional Agraria La Molina

Plant breeding and agronomy

pcereal@lamolina.edu.pe

Universidad San Antonio Abad del Cusco

Plant breeding and agronomy

aalvarezcaceres@yahoo.es

Universidad Nacional del Altiplano

Agronomy, agroindustry

amhmujica@yahoo.com

Universidad de Buenos Aires – Argentina

Agronomy and physiology

Daniel Bertero <bertero@agro.uba.ar>

Instituto de Ecología, Fundación Miguel Lillo, Tucuman, Argentina

Agronomy and quality

Juan Antonio González <juanantoniogonzlez@gmail.com>

Instituto Nacional de Investigaciones Agropecuarias

Agronomy, plant breeding

Jose Ochoa <jbjochoa@gmail.com>

PROINPA Bolivia (Foundation for the Promotion & Investigation of Andean Produce

Agronomy, plant breeding

Wilfredo Rojas <w.rojas@proinpa.org>

Pontificia Universidad Católica de Chile

Agronomy, plant breeding

Franciso Fuentes <frfuentesc@uc.cl>

Brigham Young University

Molecular biotechnology

Jeff Maughan <jeff_maughan@byu.edu>

Washington State University

Agronomy and plant breeding

Kevin Murphy <kmurphy2@wsu.edu>

7.1.2 Appendix II: Quinoa Genetic Resources

Institution

Specialization and research activities

Contact and website

Instituto Nacional de Innovación Agraria (INIA) PERU

Plant breeding and agronomy

rsanchez@inia.gob.pe

Universidad Nacional Agraria La Molina

Plant breeding and agronomy

pcereal@lamolina.edu.pe

Universidad San Antonio Abad del Cusco

Plant breeding and agronomy

aalvarezcaceres@yahoo.es

Universidad Nacional del Altiplano

Agronomy, agroindustry

amhmujica@yahoo.com

Universidad de Buenos Aires – Argentina

Agronomy and physiology

Daniel Bertero bertero@agro.uba.ar

Instituto de Ecología, Fundación Miguel Lillo, Tucuman, Argentina

Agronomy and quality

Juan Antonio González juanantoniogonzlez@gmail.com

Instituto Nacional de Investigaciones Agropecuarias

Agronomy, plant breeding

Jose Ochoa jbjochoa@gmail.com

PROINPA Bolivia (Foundation for the Promotion & Investigation of Andean Produce

Agronomy, plant breeding

Wilfredo Rojas w.rojas@proinpa.org

Pontificia Universidad Católica de Chile

Agronomy, plant breeding

Franciso Fuentes frfuentesc@uc.cl

Brigham Young University

Molecular biotechnology

Jeff Maughan jeff_maughan@byu.edu

Washington State University

Agronomy and plant breeding

Kevin Murphy kmurphy2@wsu.edu

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gomez-Pando, L.R., Aguilar-Castellanos, E., Ibañez-Tremolada, M. (2019). Quinoa (Chenopodium quinoa Willd.) Breeding. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Cereals. Springer, Cham. https://doi.org/10.1007/978-3-030-23108-8_7

Download citation

Publish with us

Policies and ethics