Breeding of Pearl Millet (Pennisetum glaucum (L.) R. Br.)

  • Ashita Bisht
  • Ashok KumarEmail author
  • Rahul Dev Gautam
  • R. K. Arya


Pearl millet (Pennisetum glaucum (L.) R. Br.) is a small-seeded cereal crop. Its protogynous nature renders it a highly cross-pollinated crop. Among cereal crops, pearl millet ranks sixth in importance based on world production, next to rice, wheat, maize, barley and sorghum; however, it is a more abundant source of nutrients than those cereal crops. Pearl millet covers 27 million ha worldwide and serves as a significant nutritional source supporting food security of more than 90 million inhabitants of arid and semiarid regions of India, South Asia and Sub-Saharan Africa. It is also a source of straw for grazing fodder, silage, hay and fuel. Due to its successful grain production even in harsh conditions, it has the potential to serve as an important cereal crop in extreme and erratic climate. Success in grain production is attributed to climate-smart vegetative, reproductive and physiological characteristics. Efforts have been made to understand its center of origin, taxonomical position, genetic resource diversity and conservation for effective utilization in breeding programs. Current circumstances demand new and improved varieties with enhanced productivity, improved quality and resilience to abiotic and biotic stresses. This requires continuous breeding based on conventional and molecular methodologies for further genetic improvement.


Composite Cytoplasmic male sterility (CMS) Hybrid Pearl millet Recurrent restricted phenotypic selection (RRPS) Synthetic 


  1. Agte VV, Tarwadi KV, Chiplonkar SA (1999) Phytate degradation during traditional cooking: significance of the phytic acid profile in cereal-based vegetarian meals. J Food Compos Anal 12:161–167CrossRefGoogle Scholar
  2. Aken’Ova ME, Chheda HR (1981) A new source of cytoplasmic-genic male sterility in pearl millet. Crop Sci 21:984–985CrossRefGoogle Scholar
  3. Akingbala JO (1991) Effect of processing on flavonoids in millet (Pennisetum amercanum) flour. Cereal Chem 68:180–183Google Scholar
  4. Akiyama Y, Goel S, Conner JA et al (2011) Evolution of the apomixes transmitting chromosome in Pennisetum. BMC Evol Biol 11:289PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ali GM, Khan NM, Hazara R, McNeilly T (2004) Variability in the response of pearl millet (Pennisetum americanum (L.) Leeke) accessions to salinity. Acta Agron Hung 52:77–286CrossRefGoogle Scholar
  6. Allouis S, Qi X, Lindup S et al (2001) Construction of a BAC library of pearl millet, Pennisetum glaucum. Theor Appl Genet 102:1200–1205CrossRefGoogle Scholar
  7. Andrews DJ, Rai KN, Singh SD (1985) A single dominant gene for rust resistance in pearl millet. Crop Sci 25(3):565–566CrossRefGoogle Scholar
  8. Appadurai R, Raveendran TS, Nagarajan C (1982) A new male sterility system in pearl millet. Indian J Agric Sci 582:832–834Google Scholar
  9. Arya RK, Yadav HP (2009) Stability of grain yield and its contributing traits in white and grey grain hybrids in bajra. Indian J Agric Sci 79:941–944Google Scholar
  10. Arya RK, Yadav HP, Chugh LK et al (2009a) Effect of environment on protein accumulation among the white and grey grain colour hybrids in pearl millet. Ann Biol 25:27–30Google Scholar
  11. Arya RK, Yadav HP, Raj D, Yadav AK (2009b) Correlation studies of white and grey grain colour hybrids in pearl millet. Agric Sci Dig 29:101–104Google Scholar
  12. Arya RK, Yadav HP, Raj D, Yadav AK, Singh MK, Arya S (2010) Genotype × environment interaction, stability and per se performance of biological yield and harvest index in pearl millet. Environment & Ecology 28(3):1477–1480Google Scholar
  13. Arya RK, Kumar S, Yadav AK, Kumar A (2013) Grain quality improvement in pearl millet: a review. Forage Res 38(4):189–201Google Scholar
  14. Arya RK, Singh MK, Yadav AK et al (2014) Advances in pearl millet to mitigate adverse environment conditions emerged due to global warming. Forage Res 40(2):57–70Google Scholar
  15. Ashraf M, McNeilly TM (1992) The potential for exploiting variation in salinity tolerance in pearl millet (Pennisetum americanum (L.) Leeke). J Plant Breed 108(3):234–240CrossRefGoogle Scholar
  16. Athwal DS (1965) Hybrid Bajara 1 marks a new era. Indian Farm 15:6–7Google Scholar
  17. Athwal DS, Luthra RC (1964) The bristled bajra that baffles birds. Indian Farm 14(4):14–40Google Scholar
  18. Bertin I, Zhu JH, Gale MD (2005) SSCP-SNP in pearl millet – a new marker system for comparative genetics. Theor Appl Genet 110(8):1467–1472PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bidinger FR, Hash CT (2004) Pearl millet. In: Nguyen HT, Blum A (eds) Physiology and biotechnology integration for plant breeding. Marcel Dekker, New York, pp 188–225Google Scholar
  20. Bidinger FR, Mahalakshmi V, Rao GDP (1987) Assessment of drought resistance in pearl millet factor affecting yield under stress. Aust J Agric Res 38:37–48CrossRefGoogle Scholar
  21. Bohra A (2013) Emerging paradigms in genomics-based crop improvement. Sci World J 2013:1–17. Scholar
  22. Bourland FM (1987) Registration of ICML11 rust resistant pearl millet germplasm. Crop Sci 27:367CrossRefGoogle Scholar
  23. Brunken JN (1977) A systematic study of Pennisetum sect. Pennisetum (Gramineae). Am J Bot 64:161–176CrossRefGoogle Scholar
  24. Brunken JN, de Wet JMJ, Harlan JR (1977) The morphology and domestication of pearl millet. Econ Bot 31:163–174CrossRefGoogle Scholar
  25. Budak H, Pedraza F, Cregan PB et al (2003) Development and utilization of SSRs to estimate the degree of genetic relationships in a collection of pearl millet germplasm. Crop Sci 43:2284–2290CrossRefGoogle Scholar
  26. Burton GW (1958) Cytoplasmic male sterility in pearl millet (Pennisetum glaucum) (L.) R. Br. Agron J 50:230–231CrossRefGoogle Scholar
  27. Burton GW (1974) Factors affecting pollen movement and natural crossing in pearl millet. Crop Sci 14:802–805CrossRefGoogle Scholar
  28. Burton GW (1983) Breeding pearl millet. In: Janick J (ed) Plant breeding reviews, vol 1. Avi Publishing Company Inc, Westport, pp 162–182CrossRefGoogle Scholar
  29. Burton GW, Forston JC (1966) Inheritance and utilization of five dwarfs in pearl millet (Pennisetum typhoides). Breed Crop Sci 6:69–70CrossRefGoogle Scholar
  30. Burton GW, Hanna WW (1976) Ethidium bromide induced cytoplasmic male sterility in pearl millet. Crop Sci 16:731. Scholar
  31. Burton GW, Hanna WW (1982) Stable cytoplasmic male sterile mutants induced in Tift 23DB millet with Mitomycin and Streptomycin. Crop Sci 22:651–652. Scholar
  32. Burton GW, Powell JB (1966) Morphological and cytological response of pearl millet, Pennisetum typhoides to thermal neutron and ethylmethane sulphonate seed treatments. Crop Sci 6:180–182CrossRefGoogle Scholar
  33. Burton GW, Powell JB (1968) Pearl millet breeding and cytogenetics. Adv Agron 20:49–89CrossRefGoogle Scholar
  34. Burton GW, Wilson JP (1995) Registration of Tift 65 parental inbred line of pearl millet. Crop Sci 35(4):1244CrossRefGoogle Scholar
  35. Burton GW, Powell JB, Hanna WW (1974) Effect of recurrent mutagen seed treatments on mutation frequency and combining ability for forage yield in pearl millet (Pennisetum americanum (L.) K. Schum.). Radiat Bot 14:323. Scholar
  36. Burton GW, Hanna WW, Powell JB (1980) Hybrid vigor in forage yields of crosses between pearl millet inbreds and their mutants. Crop Sci 20:744CrossRefGoogle Scholar
  37. Ceccarelli S, Grando S (2002) Plant breeding with farmers requires testing the assumptions of conventional plant breeding: lessons from the ICARDA Barley Program. In: Cleveland DA, Soleri D (eds) Farmers, scientists and plant breeding integrating knowledge and practice. CABI International, New York, pp 297–332CrossRefGoogle Scholar
  38. Chandola RP, Bhatnagar MP, Totuka I (1963) Chlorophyll mutants in Pennisetum typhoideum (bajra) induced by gamma rays. Curr Sci 32:179Google Scholar
  39. Chavan VM, Patil JA, Chaudhuri BB (1955) Hybrid bajra in Bombay State. Poona Agric Coll Mag 46:148–150Google Scholar
  40. Chittora K, Patel JA (2017) Estimation of heterosis for grain yield and yield components in pearl millet (Pennisetum glaucum (L.) R. Br.). IJCMAS 6:412–418Google Scholar
  41. Chopra NK, Chopra N (1997) Performance of pearl millet genotypes at different salanity levels in Western Rajasthan. Ann Arid Zone 27(3&4):183–189Google Scholar
  42. Clark JD (1964) The prehistoric origins of African culture. JAH 5:161–183CrossRefGoogle Scholar
  43. Clayton WD, Renvoize SA (1986) Genera graminum, grasses of the world. Kew Botanical Garden, KewGoogle Scholar
  44. Collard BCY, Jahufer MZZ, Brouwer JB et al (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196. Scholar
  45. Comai L, Young K, Till BJ et al (2004) Efficient discovery of DNA polymorphisms in natural populations by EcoTILLING. Plant J 37:778–786PubMedCrossRefGoogle Scholar
  46. D’Andrea AC, Casey J (2002) Pearl millet and Kintampo subsistence. Afr Archaeol Rev 19:147–173CrossRefGoogle Scholar
  47. D’Andrea AC, Klee M, Casey J (2001) Archaeobotanical evidence for pearl millet (Pennisetum glaucum) in sub-Saharan West Africa. Antiquity 75:341–348CrossRefGoogle Scholar
  48. Dua RP, Bhattacharya RK (1988) Relative salinity tolerance of pearl millet hybrids and populations. Ann Arid Zone 36(4):391–393Google Scholar
  49. Dujardin M, Hanna WW (1983) Apomictic and sexual pearl millet x Pennisetum squamulatum hybrids. J Hered 74:277–279CrossRefGoogle Scholar
  50. Dujardin M, Hanna W (1986) An apomictic polyhaploid obtained from a pearl millet × Pennisetum squamulatum apomictic interspecific hybrid. Theor Appl Genet 72(1):33–36PubMedCrossRefGoogle Scholar
  51. Dujardin M, Hanna WW (1989) Crossability of pearl millet with wild Pennisetum species. Crop Sci 29:77–80CrossRefGoogle Scholar
  52. Dutt Y, Bainiwal CR (2000) Heterosis in pearl millet population. Indian J Agric Res 34(4):255–257Google Scholar
  53. Dwivedi S, Upadhyaya H, Subudhi P et al (2010) Enhancing abiotic stress tolerance in cereals through breeding and transgenic interventions. Plant Breed Rev 33:31–114Google Scholar
  54. Dwivedi S, Upadhyaya H, Senthilvel S (2012) Millets: genetic and genomic resources. In: Janick J (ed) Plant breeding reviews, vol 35. John Wiley & Sons, Hoboken, pp 247–375Google Scholar
  55. Esechie HA, Al-Farsi SM (2009) Performance of elite pearl millet genotypes under salinity stress in Oman. Crop Res (Hisar) 37:28–33Google Scholar
  56. Gemenet DC, Hash CT, Sanogo MD et al (2015) Phosphorus uptake and utilization efficiency in West African pearl millet inbred lines. Field Crops Res 171:54–66CrossRefGoogle Scholar
  57. Gill KS (1991) Pearl millet and its improvement. Indian Council of Agricultural Research, New DelhiGoogle Scholar
  58. Gill BS, Virmani SS (1971a) Double trisomic in pearl millet. Indian J Genet 31:296–299Google Scholar
  59. Gill BS, Virmani SS (1971b) Triple trisomic in pearl millet. Curr Sci 40:22Google Scholar
  60. Gill BS, Sraon HS, Minocha JL (1966) Colchicine induced tetraploidy in Pennisetum typhoides.S & H. J Res Punjab Agric Univ Ludhiana 3:260–263Google Scholar
  61. Gill BS, Virmani SS, Minocha JL (1970a) Primary simple trisomies in pearl millet. Can J Genet Cytol 12:474–483CrossRefGoogle Scholar
  62. Gill BS, Virmani SS, Minocha JL (1970b) Aneuploids in pearl millet. Experientia 26:1021PubMedCrossRefGoogle Scholar
  63. Gill BS, Sharma HL, Dhesi JS (1973) Cytomorphological studies of haploid pearl millet. Cytologia 38:411–416CrossRefGoogle Scholar
  64. Gopalan C, Rama Sastri BV, Balasubramanian SC (2003) Nutritive value of Indian foods. National Institute of Nutrition, HyderabadGoogle Scholar
  65. Gulia SK, Wilson JP, Carter J (2007) Progress in grain pearl millet research and market development. Issues in new crops and new uses. ASHS Press, Alexandria, pp 196–203Google Scholar
  66. Gupta SK, Rai KN, Singh P et al (2015) Seed set variability under high temperatures during flowering period in pearl millet (Pennisetum glaucum L. (R.) Br.). Field Crops Res 171:41–53CrossRefGoogle Scholar
  67. Gworgwor NA (2001) Evaluation of pearl millet varieties for resistance to Striga hermonthica. Int Sorgh Millets Newsl 42:85–87Google Scholar
  68. Hanna WW (1989) Characteristics and stability of a new cytoplasmic-nuclear male sterile source in pearl millet. Crop Sci 29:1457–1459CrossRefGoogle Scholar
  69. Hanna WW, Burton GW (1978) Early mutation in pearl millet. Mutation breeding newsletter 11:2Google Scholar
  70. Hanna WW, Powell JB (1973) Stubby head an induced facultative apomict in pearl millet. Crop Sci 13:726–728CrossRefGoogle Scholar
  71. Hanna WW, Powell JB (1974) Radiation induced female sterile mutant in pearl millet. J Hered 65:247–249CrossRefGoogle Scholar
  72. Hanna WW, Wells HD (1993) Registration of parental line Tift 89D2, rust resistant pearl millet. Crop Sci 33(2):361–362CrossRefGoogle Scholar
  73. Hanna WW, Powell JB, Burton GW (1976) Relationship to polyembryony, frequency, morphology, reproductive behavior, and cytology of autotetraploids in Pennisetum americanum. Can J Genet Cytol 18:529–536CrossRefGoogle Scholar
  74. Hanna WW, Wells HD, Burton GW (1985) Dominant gene for rust resistance in pearl millet. J Hered 76:134–136CrossRefGoogle Scholar
  75. Hanna WW, Wells HD, Burton GW (1987) Registration of pearl millet inbred parental lines, Tift 85D2A1 and Tift 85D2B1. Crop Sci 27:1324–1325CrossRefGoogle Scholar
  76. Hanna WW, Dujardin M, Ozias-Akins P, Arthur L (1992) Transfer of apomixis in Pennisetum. In: Elgin JH, Miksche JP (eds) Proceedings of apomixis workshop, Feb 11–12, 1992, Atlanta, GA, USDA-ARS, pp 30–33Google Scholar
  77. Hanna WW, Hill GM, Gates RN et al (1997) Registration of Tifleaf 3 pearl millet. Crop Sci 37:1388CrossRefGoogle Scholar
  78. Hannaway DB, Larson C (2004) Forage fact sheet: pearl millet (Pennisetum americanum). Oregon State University, CorvallisGoogle Scholar
  79. Harlan JR (1971) Agricultural origins: centres and non-centers. Science 174:468–474PubMedCrossRefGoogle Scholar
  80. Harlan JR (1975) Geographic patterns of variation in some cultivated plants. J Hered 66:182–191CrossRefGoogle Scholar
  81. Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517CrossRefGoogle Scholar
  82. Hasanuzzaman M, Nahar K, Fujita M, Ozturk M (2013) Enhancing plant productivity under salt stress: relevance of poly-omics. In: Ahmad P, Azooz MM, Prasad MNV (eds) Salt stress in plants: signaling, omics and adaptations. Springer, New York, pp 113–156CrossRefGoogle Scholar
  83. Haussmann BIG, Hess DE, Omanya GO (2004) Genomic regions influencing resistance to the parasitic weed Striga hermonthica in two recombinant inbred populations of sorghum. Theor Appl Genet 109:1005–1016PubMedCrossRefGoogle Scholar
  84. Hein MA (1953) Registration of varieties and strains of pearl millet (Pennisetum glaucum (L.) R. Br.). Agron J 45:573–574CrossRefGoogle Scholar
  85. Henikoff S, Till BJ, Comai L (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol 135(2):630–636PubMedPubMedCentralCrossRefGoogle Scholar
  86. Howarth CJ, Pollock CJ, Peacock JM (1997) Development of laboratory-based methods for assessing seedling thermotolerance in pearl millet. New Phytol 137(1):129–139CrossRefGoogle Scholar
  87. Scholar
  88. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. Vienna International Centre PO Box 100 A-1400 Vienna, AustriaGoogle Scholar
  89. IBPGR and ICRISAT (1993) Descriptors for pearl millet [Pennisetum glaucum (L.) R. Br.]. IBPGR/ICRISAT, RomeGoogle Scholar
  90. ICRISAT (1997) ICRISAT report 1996. International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, Andhra Pradesh, India
  91. Ishii T (2017) Wide hybridization between oat and pearl millet. Oat: methods and protocols. Methods Mol Biol 1536:31–42PubMedCrossRefGoogle Scholar
  92. Jacobsen E, Karaba NN (2008) Cisgenics – facilitating the second green revolution in India by improved traditional plant breeding. Curr Sci 94:1365–1366Google Scholar
  93. Jain RK, Bal S (1997) Physical properties of pearl millet. J Agric Eng Res 66:85–91CrossRefGoogle Scholar
  94. Jaiswal S, Antala TJ, Mandavia MK et al (2018) Transcriptomic signature of drought response in pearl millet (Pennisetum glaucum (L.)) and development of web-genomic resources. Sci Rep 8:1–16. Scholar
  95. Jalaja N (2011) Development of transgenics for fungal resistance and discovery of chemically induced mutations in pearl millet (Pennisetum glaucum L.) population by TILLING. PhD thesis, Osmania University, Hyderabad, IndiaGoogle Scholar
  96. James D, Tarafdar A, Biswas K et al (2015) Development and characterization of a high temperature stress responsive subtractive cDNA library in pearl millet [Pennisetum glaucum (L.) R. Br]. J Exp Biol 53:543–550Google Scholar
  97. Jauhar PP (1970) Haploid meiosis and its bearing on phylogeny of pearl millet, Pennisetum typhoides Stapf et Hubb. Genetica 41:407–424CrossRefGoogle Scholar
  98. Jauhar PP (1981a) Cytogenetics and breeding of pearl millet and related species. Alan R. Liss, New YorkGoogle Scholar
  99. Jauhar PP (1981b) Cytogenetics of pearl millet. Adv Agron 34:407–479CrossRefGoogle Scholar
  100. Jauhar PP, Hanna WW (1998) Cytogenetics and genetics of pearl millet. Adv Agron 64:1–26. Scholar
  101. Jogaiah S, Kumar AS, Thakur RP et al (2009) Molecular characterization of Sclerospora graminicola, the incitant of pearl millet downy mildew revealed by ISSR markers. J Phytopathol 157:748–755CrossRefGoogle Scholar
  102. Jogaiah S, Sharathchandra RG, Niranjan R et al (2014) Development of SCAR marker associated with downy mildew disease resistance in pearl millet (Pennisetum glaucum L.). Mol Biol Rep 41:7815–7824PubMedCrossRefGoogle Scholar
  103. Joshi MG (1968) Radiation induced progressive mutants in bajra (Pennisetum typhoides Stapf and Hubb.). Curr Sci 37:235Google Scholar
  104. Joshi AB, Ahluwalia M, Shankar K (1961) Improved Ghana’ is a better bajra. Indian Farm 11:12Google Scholar
  105. Kafi M, Zamani G, Ghoraishi SG (2009) Relative salt tolerance of South Khorasan millets. Desert 14(1):63–70Google Scholar
  106. Kajuna S (2001) Millet: post-harvest operations. Sokoine Univ of Agriculture, MorogoroGoogle Scholar
  107. Kamal IA, Siddig AMA, Ali HB, Thabit AH (2013) Effect of plant spacing and variety on performance of rain-fed pearl millet (Pennisetum glaucum) grown on two soil types Zalingei area, Sudan. ARPN J Sci Technol 3(5):512–517Google Scholar
  108. Kanfany G, Fofana A, Tongoona P et al (2018a) Estimates of combining ability and heterosis for yield and its related traits in pearl millet inbred lines under downy mildew prevalent areas of Senegal. Int J Agron. Scholar
  109. Kanfany G, Fofana A, Tongoona P et al (2018b) Identification of new sources of resistance for pearl millet downy mildew disease under field conditions. Plant Gen Res 16(4):397–400CrossRefGoogle Scholar
  110. Kaushal P, Roy AK, Khare A, Choubey RN (2007) Crossability and characterization of interspecific hybrids between sexual Pennisetum glaucum and a new cytotype (2n=56) of apomictic P. squamulatum. Cytologia 71(1):111–118CrossRefGoogle Scholar
  111. Kaushal P, Khare A, Zadoo SN et al (2008) Sequential reduction of Pennisetum squamulatum genome complement in P. glaucum (2n = 28) × P. squamulatum (2n = 56) hybrids and their progenies revealed its octoploid status. Cytologia 73:151–158CrossRefGoogle Scholar
  112. Khairwal IS, Hash CT (2007) HHB 67-improved – the first product of marker-assisted crop breeding in India. In: Asia-Pacific Consortium on Agricultural Biotechnology.
  113. Khairwal IS, Yadav OP (2005) Pearl millet (Pennisetum glaucum) improvement in India-retrospect and prospects. Indian J Agric Sci 75:183–191Google Scholar
  114. Khangura BS, Gill KS, Phul PS (1980) Combining ability analysis of beta carolene, total carotenoids and other grain characteristics in pearl millet (Penniselum typhoides). Theor Appl Genet 6:91–96CrossRefGoogle Scholar
  115. Koduru PRK, Murty TGK, Lakshmi KV (1980) Sectional translocation monosomy in a plant of Pennisetum americanum (L.) Leeke. Chromosoma 78:365–370. Scholar
  116. Koduru PRK, Rao MK (1978) Chromosome pairing and desynapsis in spontaneous autopolyploids of Pennisetum typhoides. Cytologia 43:445–452CrossRefGoogle Scholar
  117. Koernicke F, Werner H (1885) Handbuch des Getreidesbaues, Die Sorten und der Anbau des Getreides, vol 2. Verlag von Paul Parey, BerlinCrossRefGoogle Scholar
  118. Krishnamurthy L, Serraj R, Rai KN et al (2007) Identification of pearl millet [Pennisetum glaucum (L.) R. Br.] lines tolerant to soil salinity. Euphytica 158(1–2):179–188CrossRefGoogle Scholar
  119. Krishnaswamy N (1962) Bajra: Pennisetum typhoides S & H. Indian Council of Agricultural Research, New DelhiGoogle Scholar
  120. Krishnaswamy N, Ayyangar GNR (1941) An autotriploid in the pearl millet (Pennisetum typhoides Stapf et Hubb). Proc Indian Acad Sci B 13:9–23CrossRefGoogle Scholar
  121. Krishnaswamy N, Ayyangar GNR (1942) Certain abnormalities in millets induced by x-rays. Proc Indian Acad Sci 16:1–9CrossRefGoogle Scholar
  122. Krishnaswamy N, Raman VS, Nair NH (1950) An autotetraploid in pearl millet. Curr Sci 19:252–253PubMedPubMedCentralGoogle Scholar
  123. Kumar A, Manga VK, Gour HN et al (2012) Pearl millet downy mildew: challenges and prospects. Rev Plant Pathol 5:139–177Google Scholar
  124. Kumar S, Hash CT, Thirunavukkarasu N et al (2016) Mapping quantitative trait loci controlling high iron and zinc content in self and open pollinated grains of pearl millet [Pennisetum glaucum (L.) R. Br.]. Front Plant Sci 7:1–16. Scholar
  125. Kumar S, Hash CT, Nepolean T et al (2017) Mapping QLTs controlling flowering time and important agronomic traits in pearl millet. Front Plant Sci 20:1731. Scholar
  126. Kusaka M, Ohta M, Fujimura T (2005) Contribution of inorganic components to osmotic adjustment and leaf folding for drought tolerance in pearl millet. Physiol Plant 125(4):474–489CrossRefGoogle Scholar
  127. Lata C (2015) Advances in omics for enhancing abiotic stress tolerance in millets. Proc Indian Nat Sci Acad 81:397–417. Scholar
  128. Laxmi V, Singh RB, Singh BD et al (1975) Induction of translocations and trisomics in pearl millet by γ-rays and ethylmethane sulphonate. Indian J Exp Biol 13:460–464Google Scholar
  129. Lee D, Hanna W, Buntin GD et al (2012) Pearl millet for grain. College of Ag and Env Sci, Univ of Georgia Cooperative Extension. Bulletin #B 1216Google Scholar
  130. Liu CJ, Witcombe JR, Pittaway TS et al (1994) An RFLP-based genetic map of pearl millet (Pennisetum glaucum). Theor Appl Genet 89:481–487. Scholar
  131. Mahalakshmi V, Bidinger FR, Raju DS (1987) Effect of timing of water deficit on pearl millet (Pennisetum americanum). Field Crops Res 15:327–339CrossRefGoogle Scholar
  132. Maman N, Mason SC, Lyon DJ (2006) Nitrogen rate influence on pearl millet yield, nitrogen uptake, and nitrogen use efficiency in Nebraska. Commun Soil Sci Plant Anal 37:127–141CrossRefGoogle Scholar
  133. Manga V (1972) Cytogenetic studies of pearl millet (Pennisetum typhoides Stapf et Hubbard). Ph. D. Thesis, Andhra University, Waltair, IndiaGoogle Scholar
  134. Manga V (1977) Interchange trisomics in pearl millet. Experientia 33:1581–1582CrossRefGoogle Scholar
  135. Manga VK (2015) Diversity in pearl millet [Pennisetum glaucum (l.) R. Br.] and its management. Indian J Plant Sci 4(1):38–51Google Scholar
  136. Manga VK, Kumar A (2013) Developing pearl millet seed parents adapted to arid regions of north western India. Ann Arid Zone 52(1):71–75Google Scholar
  137. Manga V, Pantulu JV (1971) The meiotic behaviour of a haploid pearl millet. Genetica 42:319–328CrossRefGoogle Scholar
  138. Manga VK, Yadav OP (1997) Development of a landrace based male-sterile line (CZMS 44A) of pearl millet. J Crop Improv 24(1):125–126Google Scholar
  139. Marchais L, Pernes J (1985) Genetic divergence between wild and cultivated pearl millets (Pennisetum typhoides) I. Male sterility. Z Pflanzenzüchtg 95:103–112Google Scholar
  140. Marchais L, Tostain S (1992) Bimodal phenotypic structure of two wild pearl millet samples collected in an agricultural area. Biodivers Conserv 1:170–178CrossRefGoogle Scholar
  141. Mariac C, Luong V, Mmadou A et al (2006) Diversity of wild and cultivated pearl millet accessions (Pennisetum glaucum [L.] R. Br.) in Niger assessed by microsatellite markers. Theor Appl Genet 114:49–58PubMedCrossRefGoogle Scholar
  142. Martel E, De ND, Siljak-Yakovlev S (1997) Genome size variation and basic chromosome number in pearl millet and fourteen related Pennisetum species. J Hered 88:139–143CrossRefGoogle Scholar
  143. Martel E, Poncet V, Lamy F et al (2004) Chromosome evolution of Pennisetum species (Poaceae): implications of ITS phylogeny. Plant Syst Evol 249:139. Scholar
  144. Martin-Dias AM, Pessanha KLF, Pacheco S et al (2017) Potential use of pearl millet (Pennisetum glaucum (L.) R. Br.) in Brazil: food security, processing, health benefits and nutritional products. Food Res Int 109:175–186CrossRefGoogle Scholar
  145. Maryam AH (2015) Evaluation of heterosis in pearl millet (Pennisetum glaucum (L.) R. Br) for agronomic traits and resistance to downy mildew and Resistance to Downy Mildew (Sclerospora graminicola). JAC 1:1–8Google Scholar
  146. McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18(4):455–457PubMedCrossRefGoogle Scholar
  147. Minocha JL, Brar DS (1976) Multiple interchange trisomic in pearl millet. Indian J Genet 36:153–155Google Scholar
  148. Minocha JL, Sharma HL, Gill BS (1972) Polyploids of inbreds and open pollinated variety of pearl millet. Indian J Genet 32:211–214Google Scholar
  149. Minocha JL, Brar DS, Gill BS (1974) Tertiary trisomies in Pennisetum typhoides. Experientia 30:623–624PubMedCrossRefPubMedCentralGoogle Scholar
  150. Mohammed HI, Hamza NB (2018) Genetic diversity analysis of forty pearl millet (Pennisetum glaucum (L.) R. Br) accessions from Sudan using agronomical descriptors and DNA molecular markers. Adv Biotechnol 9:322–337Google Scholar
  151. Munson PJ (1975) Archaeological data on the origins of cultivation in the southwestern Sahara and its implications for West Africa. In: Harlan JR, DeWet JMJ, Stemler ABL (eds) The origins of African plant domestication. Mouton Press, The Hague, pp 187–210Google Scholar
  152. Muntzing A (1958) Accessory chromosomes. Trans Bose Res Inst (Calcutta) 22:l–15Google Scholar
  153. Murdock GP (1959) Africa: Its peoples and their culture history. McGraw-Hill, New YorkGoogle Scholar
  154. Murty BR (1977) Breeding procedures in pearl millet (Pennisetum typhoides S. & H.). Indian Council of Agricultural Research, New DelhiGoogle Scholar
  155. Murty BR (1980) Breakthrough in breeding for resistance to downy mildew in pearl millet. Prot Plant 10:311Google Scholar
  156. Muthamilarasan M, Dhaka A, Yadav R et al (2016) Exploration of millet models for developing nutrient rich graminaceous crops. Plant Sci 242:89–97PubMedCrossRefPubMedCentralGoogle Scholar
  157. Myers RL (2002) Alternative crop guide: pearl millet. Jefferson Institute, Washington, DCGoogle Scholar
  158. Nadaf SK, Al-Hinai SA, Al-Farsi (2010) Differential response of salt tolerant pearl millet genotypes to irrigation water salinity. In: Mushtaque A, Al-Rawahy SA, Hussain N (eds) A monograph on management of salt affected soils and water for sustainable agriculture. Sultan Qaboos University, Muscat, pp 47–60Google Scholar
  159. Nambiar VS, Sareen N, Daniel M et al (2012) Flavonoids and phenolic acids from pearl millet (Pennisetum glaucum) based foods and their functional implications. Funct Foods Health Dis 2:251–264CrossRefGoogle Scholar
  160. Narasinga Rao PSRL, Narayano Rao I (1977) Two interchange trisomics in pearl millet. Curr Sci 46:314–315Google Scholar
  161. Newman Y, Jennings E, Vendramini J et al (2010) Pearl millet (Pennisetum glaucum): overview and management. Univ. of FL. IFAS Extension. Publication #SS-AGR-337Google Scholar
  162. O’Kennedy MM, Stark HC, Dube N (2011) Biolistic-mediated transformation protocols for maize and pearl millet using pre-cultured immature zygotic embryos and embryogenic tissue. Plant Embryo Cult 710:343–354. Scholar
  163. Oumar I, Mariac C, Pham JL et al (2008) Phylogeny and origin of pearl millet (Pennisetum glaucum [L.] R. Br.) as revealed by microsatellite loci. Theor Appl Genet 117:489–497. Scholar
  164. Ozias-Akins P, Ferl RJ, Vasil IK (1986) Somatic hybridization in the Gramineae: Pennisetum americanum (L.) K. Schum. (Pearl millet) Panicum maximum Jacq. (Guinea grass). Mol Genet Genomics 203(3):365–370CrossRefGoogle Scholar
  165. Ozias-Akins P, Roche D, Hanna WW (1998) Tight clustering and hemizygosity of apomixes-linked molecular markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes. Proc Natl Acad Sci U S A 95:5127–5132PubMedPubMedCentralCrossRefGoogle Scholar
  166. Pannu PPS, Sokhi SS, Aulakh KS (1996) Resistance in pearl millet against rust. Indian Phytopath 49(3):243–246Google Scholar
  167. Pantulu JV (1960) Accessory chromosomes in Pennisetum typhoides. Curr Sci 29:28–29Google Scholar
  168. Pantulu JV (1961) Cytological studies in the genus Pennisetum with some cytological observations in the genus Cassia. PhD Thesis, Andhra University, Waltair, IndiaGoogle Scholar
  169. Pantulu JV (1968) Meiosis in an autotriploid pearl millet. Caryologia 21:11–15CrossRefGoogle Scholar
  170. Pantulu JV, Manga V (1969) Meiosis in a haploid pearl millet. Curr Sci 38:143–144Google Scholar
  171. Pantulu JV, Rao GJN (1977a) A tertiary trisomic with two telocentric chromosomes in pearl millet. Cereal Res Commun 5:311–313Google Scholar
  172. Pantulu JV, Rao GJN (1977b) Double telo trisomic for the nucleolar chromosome in pearl millet. Cereal Res Commun 5:461–463Google Scholar
  173. Pantulu JV, Manga V, Subba Rao MV (1976) Monotelodisomics in pearl millet. Theor Appl Genet 47:85–86PubMedCrossRefGoogle Scholar
  174. Parker C, Wilson AK (1983) Striga-resistance identified in semi-wild ‘Shibra’ millet (Pennisetum sp.). Med Fac Land Rijks Univ Gent 48:1111–1117Google Scholar
  175. Passot S, Gnacko F, Moukouanga D et al (2016) Characterization of pearl millet root architecture and anatomy reveals three types of lateral roots. Front Plant Sci 7:829. Scholar
  176. Pattanashetti SK, Upadhyaya HD, Dwivedi SL et al (2016) Pearl millet. In: Singh M, Upadhyaya HD (eds) Genetic and genomic resources for grain cereals improvement. Academic, London, pp 253–289CrossRefGoogle Scholar
  177. Peacock JM, Soman P, Jayachandran R et al (1993) Effect of high soil surface temperature on seedling survival in pearl millet. Exp Agric 29:215–225CrossRefGoogle Scholar
  178. Perez-de-Castro AM, Vilanova S, Canizares J et al (2012) Application of genomic tools in plant breeding. Curr Genomics 13:179–195. Scholar
  179. Pernes J (1984) Plant genetic resources management, vol 1. ACCT, ParisGoogle Scholar
  180. Pfeiffer W, Andersson M, Gocindaraj M et al (2018) Biofortification in underutilized staple crops for nutrition in Asia and Africa. In: Regional expert consultation on underutilized crops for food and nutritional security in Asia and the Pacific – thematic, strategic papers and country status reports. Asia-Pacific Association of Agricultural Research Institutions (APAARI), Bangkok, pp 70–81Google Scholar
  181. Poehlman JM (1995) Breeding field crops. Iowa State University Press, AmesGoogle Scholar
  182. Porteres R (1976) African cereals: Eleusine, fonio, black fonio, teff, Bracharia, Paspalum, Pennisetum and African rice. In: Harlan JR, de Wet JMJ, Stemler ABL (eds) Origins of African plant domestication. Mouton, Hague, pp 409–452Google Scholar
  183. Powell JB, Burton GW (1966) Nucleolus-organizing accessory chromosomes in pearl millet, Pennisetum typhoides. Crop Sci 6:131–134CrossRefGoogle Scholar
  184. Powell JB, Burton GW (1968) Polyembryony in pearl millet, Pennisetum typhoides. Crop Sci 8:771–773CrossRefGoogle Scholar
  185. Powell JB, Hanna WW, Burton GW (1975) Origin, cytology and reproductive behavior of haploids in pearl millet. Crop Sci 15:389–392CrossRefGoogle Scholar
  186. Pray CE, Nagarajan L (2009) Pearl millet and sorghum improvement in India. IFPRI Discussion Paper 919. International Food Policy Research Institute, Washington DCGoogle Scholar
  187. Pucher A, Hash CT, Wallace JG et al (2018) Mapping a male fertility restoration locus for the A4 cytoplasmic-genic male-sterility system in pearl millet using a genotyping by sequencing based linkage map. BMC Plant Biol 18:65PubMedPubMedCentralCrossRefGoogle Scholar
  188. Qi X, Lindup S, Pittaway TS et al (2001) Development of simple sequence repeat markers from bacterial artificial chromosomes without subcloning. Biotechnology 31:355–358CrossRefGoogle Scholar
  189. Rachie KO, Majumdar JV (1980) Pearl millet. Pennsylvania State University Press, University ParkGoogle Scholar
  190. Radhouane L (2013) Agronomic and physiological responses of pearl millet ecotype (Pennisetum glaucum (L.) R. Br.) to saline irrigation. Emir J Food Agric 25(2):109–116CrossRefGoogle Scholar
  191. Rai KN (1995) A new cytoplasmic-nuclear male sterility system in pearl millet. Plant Breed 114:445–447. Scholar
  192. Rai KN, Thakur RP, Rao AS (1998a) Registration of pearl millet parental lines ICMA 88006 and ICMB 88006. Crop Sci 38:575–576Google Scholar
  193. Rai KN, Talukdar BS, Rao AS (1998b) Registration of pearl millet parental lines ICMA 92666 and ICMB 92666 with multiple disease resistance. Crop Sci 38:575Google Scholar
  194. Rajaram V, Nepolean T, Senthilvel S et al (2013) Pearl millet [Pennisetum glaucum (L.) R. Br.] consensus linkage map constructed using four RIL mapping populations and newly developed EST-SSRs. BMC Genomics 14:159PubMedPubMedCentralCrossRefGoogle Scholar
  195. Rao SA, de Wet JMJ (1999) Taxonomy and evolution. In: Khairwal IS, Rai KN, Andrews DJ, Harinarayana G (eds) Pearl millet breeding. Oxford and IBH Publishing Co, New Delhi, pp 29–47Google Scholar
  196. Rao AS, Poonia S (2011) Climate change impact on crop water requirements in arid Rajasthan. J Agrometeor 13(1):17–24Google Scholar
  197. Rau NS (1929) On the chromosome numbers of some cultivated plants of South India. J Indian Bot Sci 8:126–128Google Scholar
  198. Raut RN, Sharma B, Pokhariyal SC et al (1974) Induced mutations: some basic findings and applied results. In: Ramanujam S, Iyer RD (eds) Breeding research in Asia and Oceania. Indian Society of Genetics and Plant Breeding, New Delhi, pp 311–315Google Scholar
  199. Reader SM, Miller TE, Purdie KA (1996) Cytological studies of plant chromosomes using rapid in situ hybridization. Euphytica 89:121–124CrossRefGoogle Scholar
  200. Robert JF, Vasil V, Vasil IK (1988) Somatic hybridization in the Gramineae: Triticum monococcum + Pennisetum americanum. J Plant Physiol 132(2):160–163CrossRefGoogle Scholar
  201. Robert T, Khalfallah N, Martel E et al (2011) Pennisetum. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, vol 9. Springer, Heidelberg, pp 217–255CrossRefGoogle Scholar
  202. Roger ZG, Ramaiah KV (1983) Screening of pearl millet cultivars for resistance to Striga hermonthica. In: Proceedings of the Second International Workshop on Striga, Ouagadougou, Upper Volta, October 5–8, 1981, pp 77–81, 83–86Google Scholar
  203. Rupa KK, Sahai AK, Kumar KK, Patwardhan SK et al (2006) High resolution climate change scenarios for India for 21st century. Curr Sci 90:334–345Google Scholar
  204. Schmelzer GH (1997) Review of Pennisetum section Brevivalvula (Poaceae). Euphytica 97:1–20CrossRefGoogle Scholar
  205. Sehgal D, Rajaram V, Armstead IP et al (2012) Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci. BMC Plant Biol 12(1):9PubMedPubMedCentralCrossRefGoogle Scholar
  206. Sehgal D, Skot L, Singh R et al (2015) Exploring potential of pearl millet germplasm association panel for association mapping of drought tolerance traits. PLoS One 10:1–28. Scholar
  207. Senthilvel S, Jayashree B, Mahalakshmi V et al (2008) Development and mapping of simple sequence repeat markers for pearl millet from data mining of expressed sequence tags. BMC Plant Biol 8:119PubMedPubMedCentralCrossRefGoogle Scholar
  208. Senthilvel S, Nepolean T, Supriya A et al (2010) Development of a molecular linkage map of pearl millet integrating DArT and SSR markers. In: Plant Animal Genome 18 Conference, San Diego, 9–13 Jan 2010. AbstractGoogle Scholar
  209. Serba DD, Yadav RS (2016) Genomic Tools in pearl millet breeding for drough tolerance: status and prospects. Front Plant Sci 7:1–10. Scholar
  210. Serba DD, Perumal R, Tesso TT et al (2017) Status of global pearl millet breeding programs and the way forward. Crop Sci 57:2891–2905CrossRefGoogle Scholar
  211. Serraj R, Hash CT, Rizvi SMH et al (2005) Recent advances in marker-assisted selection for drought tolerance in pearl millet. Plant Prod Sci 8:334–337. Scholar
  212. Sharma A and Saharan MR (2006) Studies on development of rancidity in stored flour of pearl millet [Pennisetum glaucum (L.) R. Br.]. Thesis.
  213. Sharma YK, Yadav SK, Khairwal IS (2007) Evaluation of pearl millet germplasm lines against downy mildew incited by Sclerospora graminicola in western Rajasthan. J Sat Agric 3:2Google Scholar
  214. Sharma R, Upadhyaya HD, Manjunatha SV et al (2013) Pathogenic variation in the pearl millet blast pathogen Magnaporthe grisea and identification of resistance to diverse pathotypes. Plant Dis 97(2):189–195PubMedCrossRefGoogle Scholar
  215. Sharma R, Upadhyaya HD, Sharma S et al (2015) Identification of new sources of resistance to multiple pathotypes of Sclerospora graminicola in the pearl millet mini core germplasm collection. Crop Sci 55(4):1619–1628CrossRefGoogle Scholar
  216. Sheahan CM (2014) Plant guide for pearl millet (Pennisetum glaucum). USDA-Natural Resources Conservation Service, Cape May Plant Materials Center, Cape MayGoogle Scholar
  217. Shivhare R, Lata C (2016) Selection of suitable reference genes for assessing gene expression in pearl millet under different abiotic stresses and their combinations. Sci Rep 6:23036PubMedPubMedCentralCrossRefGoogle Scholar
  218. Shivhare R, Lata C (2017) Exploration of genetic and genomic resources for abiotic and biotic stress tolerance in pearl millet. Front Plant Sci 7:2069. Scholar
  219. Shull GH (1948) What is “Heterosis”? Genetics 33(5):439–446PubMedPubMedCentralGoogle Scholar
  220. Singh SD (1990) Sources of resistance to downy mildew and rust in pearl millet. Plant Dis 74:871–874CrossRefGoogle Scholar
  221. Singh B (1993) Supra-optimal temperature tolerance in pearl millet inheritance pattern of some adaptive traits at seedling stage. MSc thesis, CCS HAU, Hisar, IndiaGoogle Scholar
  222. Singh BD (2017) Plant breeding: principles and methods. Kalyani Publishers, New DelhiGoogle Scholar
  223. Singh SD, Navi SS (2000) Genetic resistance to pearl millet downy mildew. II. Resistance in wild relatives. J Mycol Plant Pathol 30:167–171Google Scholar
  224. Singh BD, Singh AK (2015) Marker-assisted plant breeding: principles and practices. Springer. Scholar
  225. Singh SD, Talukdar BS (1998) Inheritance of complete resistance to pearl millet downy mildew. Plant Dis 82(7):791–793PubMedCrossRefPubMedCentralGoogle Scholar
  226. Singh RB, Singh BD, Singh RM et al (1977) Meiosis in radiation induced triploid and tetraploid plants of pearl millet. Cytologia 42:633–637CrossRefGoogle Scholar
  227. Singh SD, Williams RJ, Reddy PM (1988) Isolation of downy mildew resistant lines from a highly susceptible cultivar of pearl millet. Indian Phytopathol 41(3):450–456Google Scholar
  228. Singh M, Conner JA, Zeng YJ et al (2010) Characterization of apomictic BC7 and BC8 pearl millet: meiotic chromosome behaviour and construction of an asgr-carrier chromosome-specific library. Crop Sci 50:892–902CrossRefGoogle Scholar
  229. Soman P, Bidinger FR, Peacock JM, Walker TS (1981) Seedling establishment – a preliminary survey taken up in Aurepally during kharif 1981. ICRISAT Internal Report. ICRISAT, PatancheruGoogle Scholar
  230. Stapf O, Hubbard CE (1934) Pennisetum. In: Prain D (ed) Flora of tropical Africa, vol 9. Reeve & Co. Ltd, Ashford, pp 954–1070Google Scholar
  231. Sujata V, Sivaramakrishnan S, Rai KN et al (1994) A new source of cytoplasmic male sterility in pearl millet: RFLP analysis of mitochondrial DNA. Genome 37:482–486PubMedCrossRefGoogle Scholar
  232. Supriya A, Senthilvel S, Nepolean T et al (2011) Development of a molecular linkage map of pearl millet integrating DArT and SSR markers. Theor Appl Genet 123:239–250PubMedCrossRefGoogle Scholar
  233. Tabaeizadeh Z, Ferl RJ, Vasil IK (1986) Genetics somatic hybridization in the Gramineae: Saccharum officinarum L. (sugarcane) and Pennisetum americanum (L.) K. Schum. (pearl millet). Proc Natl Acad Sci 83:5616–5619PubMedCrossRefGoogle Scholar
  234. Tako E, Reed SM, Budiman J et al (2015) Higher iron pearl millet (Pennisetum glaucum L.) provides more absorbable iron that is limited by increased polyphenolic content. Nutr J 14:11PubMedPubMedCentralCrossRefGoogle Scholar
  235. Taylor JRN (2004) Pearl Millet. In: Wrigley C, Corke H, Walker CE (eds) Encyclopedia of grain science, vol 2. Elsevier, London, pp 253–261CrossRefGoogle Scholar
  236. Thakur RP, King SB (1988a) Registration of four ergot resistant germplasms of pearl millet. Crop Sci 28:382–383Google Scholar
  237. Thakur RP, King SB (1988b) Smut disease of pearl millet. Inf. Bull. No. 25. International Crops Research Institute for the Semi Arid Tropics, PatancheruGoogle Scholar
  238. Thakur RP, Williams RJ, Rao VP (1982) Development of resistance to ergot in pearl millet. Phytopathology 72(4):406–408CrossRefGoogle Scholar
  239. Thakur RP, Rao KVS, Williams RJ et al (1986) Identification of stable resistance to smut in pearl millet. Plant Dis 70(1):38–41CrossRefGoogle Scholar
  240. Thakur RP, King SB, Rai KN et al (1992) Identification and utilization of smut resistance in pearl millet. Research Bulletin No. 16. International Crops Research Institute for the Semi Arid Tropics, PatancheruGoogle Scholar
  241. Thakur RP, Shetty HS, Khairwal IS (2006) Pearl millet downy mildew research in India: progress and perspectives. J Sat Agric 2:6Google Scholar
  242. Till BJ, Reynolds SH, Greene EA et al (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13:524–530PubMedPubMedCentralCrossRefGoogle Scholar
  243. Till BJ, Burtner C, Comai L et al (2004) Mismatch cleavage by single-strand specific nucleases. Nucl Acids Res 32(8):2632–2641PubMedCrossRefPubMedCentralGoogle Scholar
  244. Triques K, Piednoir E, Dalmais M et al (2008) Mutation detection using ENDO1: Application to disease diagnostics in humans and TILLING and EcoTILLING in plants. BMC Mol Biol 9:9CrossRefGoogle Scholar
  245. Tyagi BR (1975) Tertiary trisomics in pearl millet. Proc Indian Natl Sci Acad 41:545–549Google Scholar
  246. Upadhyaya HD, Reddy KN, Gowda CLL (2007) Pearl millet germplasm at ICRISAT genebank – status and impact. J SAT Agric Res 3:1–5Google Scholar
  247. Vadez V, Hash T, Kholova J (2012) Phenotyping pearl millet for adaptation to drought. Front Phys 3:386CrossRefGoogle Scholar
  248. Van Oosterom EJ, Weltzien E, Yadav OP et al (2006) Grain yield components of pearl millet under optimum conditions can be used to identify germplasm with adaptation to arid zones. Field Crops Res 96:407–421CrossRefGoogle Scholar
  249. Vari AK, Sidhu JS, Minocha JL (1999) Cytogenetics. In: Khairwal IS, Rai KN, Andrews DJ, Harinarayana G (eds) Pearl millet breeding. Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi, pp 83–117Google Scholar
  250. Varshney RK, Shi C, Thudi M et al (2017) Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol 35:969–976. Scholar
  251. Vavilov NI (1949) The origin, variation, immunity and breeding of cultivated plants. Chronica Botanica, Waltham, Massachusetts. file:///C:/Users/HP/Downloads/P2466.pdfGoogle Scholar
  252. Venkateswarlu J, Mani JNR (1978) Tertiary trisomics in pearl millet (Pennisetum typhoides Stapf and Hubb.). Genetics 48:145–149Google Scholar
  253. Verma JP, Kewat RN, Singh P, Brijesh et al (2018) Biochemical composition of pearl millet germplasm collected from Eastern UP. J Pharmacogn Phytochem 7:1888–1889Google Scholar
  254. Vetriventhan M, Nirmalakumari A, Ganapathy S (2008) Heterosis for grain yield components in pearl millet (Pennisetum glaucum (L.) R. Br.). World J Agric Sci 4:657–660Google Scholar
  255. Virmani SS, Gill BS (1971) Cytological behaviour of primary simple trisomics of pearl millet. Caryologia 24:427–433CrossRefGoogle Scholar
  256. Weltzien E, Fischbeck G (1990) Performance and variability of local barley landraces in near-eastern environments. Plant Breed 104:58–67CrossRefGoogle Scholar
  257. Willingale J, Mantle PG, Thakur RP (1986) Post-pollination stigmatic constriction, the basis of ergot resistance in selected lines of pearl millet. Phytopathology 76:536–539CrossRefGoogle Scholar
  258. Wilson JP, Burton GW (1991) Registration of Tift 3 and Tift 4 rust resistant pearl millet germplasms. Crop Sci 31(6):1713CrossRefGoogle Scholar
  259. Wilson JP, Wells HD, Burton GW (1989a) Leaf spot, rust and smut resistance in pearl millet landraces from central Burkina Faso. Plant Dis 73(4):345–349CrossRefGoogle Scholar
  260. Wilson JP, Wells HD, Burton GW (1989b) Inheritance of resistance to Pyricularia grisea in pearl millet accessions from Burkina Faso and inbred Tift 85DB. J Hered 80(6):499–501CrossRefGoogle Scholar
  261. Wilson JP, Hessb DE, Hannac WW et al (2004) Pennisetum glaucum subsp. monodii accessions with Striga resistance in West Africa. Crop Prot 23:865–870CrossRefGoogle Scholar
  262. Wilson JP, Sanogo MD, Nutsugah SK et al (2008) Evaluation of pearl millet for yield and downy mildew resistance across seven countries in sub-Saharan Africa. Afr J Agric Res 3(5):371–378Google Scholar
  263. Yadav OP (2004) CZP 9802-a new drought-tolerant cultivar of pearl millet. Indian Farm 54:15–17Google Scholar
  264. Yadav OP (2008) Performance of landraces, exotic elite populations and their crosses in pearl millet (Pennisetum glaucum) in drought and non-drought conditions. Plant Breed 127:208–210CrossRefGoogle Scholar
  265. Yadav OP, Bidinger FR (2008) Dual-purpose landraces of pearl millet (Pennisetum glaucum) as sources of high stover and grain yield for arid zone environments. Plant Genet Res 6(02):73–78CrossRefGoogle Scholar
  266. Yadav MS, Duhan JC (1996) Screening of pearl millet genotypes for resistance to smut. Plant Dis Res 11:95–96Google Scholar
  267. Yadav OP, Rai KN (2013) Genetic Improvement of Pearl Millet in India. Agric Res 2:275–292. Scholar
  268. Yadav AK, Narwal MS, Singh B (2006) Field screening technique for heat effect on seedlings of pearl millet (Pennisetum glaucum L. R. Br.). In: National seminar on transgenic crops in Indian agriculture: status, risk and acceptance, 28–29 January, 2006, National Society of plant science, CCS HAU, Hisar (Haryana), pp 109–112Google Scholar
  269. Yadav OP, Mitchell SE, Zamora A et al (2007a) Development of new simple sequence repeat markers for pearl millet. J SAT Agric Res 3:34–37Google Scholar
  270. Yadav S, Jain S, Jain V et al (2007b) Genetic analysis of CMS, restorer, hybrid and open-pollinated genotypes of Indian pearl millet [Pennisetum glaucum (L.) R. Br.] using ISSR markers. Indian J Biotechnol 6:340–348Google Scholar
  271. Yadav OP, Mitchell SE, Fulton TM, Kresovich S (2008) Transferring molecular markers from sorghum, rice and other cereals to pearl millet and identifying polymorphic markers. J SAT Agric Res 6:1–4Google Scholar
  272. Yadav AK, Arya RK, Narwal MS (2009a) Screening for supra-optimal temperature tolerance through membrane thermostability in pearl millet (Pennisetum glaucum L.R. Br.). Forage Res 35(2):85–90Google Scholar
  273. Yadav AK, Narwal MS, Arya RK (2009b) Stability studies for maturity traits with super-optimal temperature exposure at seedling stage in pearl millet (Pennisetyum glaucum L. R. Br.). In: Forage Symposium 2009: Emerging trends in forage research and livestock production. Feb. 16-17, 2009 at CAZRI, RRS Jaisalmer (Rajasthan) pp. 60-67Google Scholar
  274. Yadav DK, Chhabra AK, Yadav HP, Chugh LK (2010) Studies on biochemical traits for rancidity in pearl millet [Pennisetum glaucum (L.) R. Br.]. Forage Res 36:37–41Google Scholar
  275. Yadav AK, Narwal MS, Arya RK (2011) Genetic dissection of temperature tolerance in pearl millet (Pennisetum glaucum). Indian J Agric Sci 81(3):203–213Google Scholar
  276. Yadav AK, Narwal MS, Arya RK (2012) Study of genetic architecture for maturity traits in relation to supra-optimal temperature tolerance in pearl millet (Pennisetum glaucum L. R. Br.). Int J Plant Breed Genet 6(3):115–128. Scholar
  277. Yadav AK, Narwal MS, Arya RK (2013) Evaluation of pearl millet (Pennisetum glaucum L.R. Br.) genotypes for supra-optimal temperature tolerance at seedling stage. Indian J Agric Sci 83(3):260–271Google Scholar
  278. Yadav AK, Arya RK, Narwal MS (2014a) Inheritance of seedling heat tolerance and maturity traits in diallel F1 hybrids of pearl millet (Pennisetum glaucum). Indian J Agric Sci 84(12):1477–1485Google Scholar
  279. Yadav AK, Arya RK, Narwal MS (2014b) Screening of pearl millet F1 hybrids for heat tolerance at early seedling stage. Adv Agric:231301. Scholar
  280. Yadav OP, Upadhyaya HD, Reddy KN (2017) Genetic resources of pearl millet: Status and utilization. Indian J Plant Gen Res 30:31–47CrossRefGoogle Scholar
  281. Zala HN, Kulkarni KS, Bosamia TC et al (2017) Development and validation of EST derived SSR markers with relevance to downy mildew (Sclerospora graminicola Sacc.) resistance in pearl millet [Pennisetum glaucum (L.) R. Br.]. J Plant Biochem Biotech 26(3):356–365CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ashita Bisht
    • 1
  • Ashok Kumar
    • 1
    Email author
  • Rahul Dev Gautam
    • 1
  • R. K. Arya
    • 2
  1. 1.Department of Agrotechnology of Medicinal, Aromatic and Commercially Important Plants (AMACIP)CSIR-IHBTPalampurIndia
  2. 2.Department of Genetics and Plant BreedingCCS HAUHisarIndia

Personalised recommendations