CRISPR/Cas9 Genome Editing in Bread Wheat (Triticum aestivum L.) Genetic Improvement

  • Soleyman Dayani
  • Mohammad R. SabzalianEmail author
  • Maryam Mazaheri-Tirani


Bread wheat (Triticum aestivum L.) is the most important staple crop worldwide. Wheat has a large and allohexaploid genome with more than 107 thousand gene models that expand over 21 chromosomes with 3 replicates. The high complexity of the wheat genome has restricted the success of conventional breeding programs. Wheat genome modification by biotechnological methods has been hindered due to the current methods limitations and safety issues over genetically-modified crops. CRISPR/Cas9 is an emerging biotechnological tool that holds promises for multiplexed, sequence-specific, efficient and rapid manipulation of large genomes such as that of wheat. The CRISPR/Cas9 system introduces sequence-specific double-strand breaks (DSBs) in DNA by synthetic nucleases. The targeted genomic loci are then fixed by DNA repair mechanisms such as non-homologous end-joining (NHEJ) or homology-directed repair (HDR). The system and its improved sub-techniques have achieved significant successes in addressing biosafety and legal concerns over genetically-modified plant production. In this chapter, the history, potentials and the latest results of CRISPR/Cas9-based genetic manipulations in bread wheat is reviewed.


Common wheat  Polyploidy genomes Multiplexed Sequence-specific genetic editing 


  1. Al-Attar S, Westra ER, van der Oost J et al (2011) Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes. Biol Chem 392:277–289PubMedCrossRefGoogle Scholar
  2. Appels R, Eversole K, Feuillet C et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361(6403).
  3. Araki M, Ishii T (2015) Towards social acceptance of plant breeding by genome editing. Trends Plant Sci 20:145–149PubMedCrossRefGoogle Scholar
  4. Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712PubMedPubMedCentralCrossRefGoogle Scholar
  5. Belhaj K, Chaparro-Garcia A, Kamoun S et al (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84PubMedCrossRefGoogle Scholar
  6. Bhowmik P, Ellison E, Polley B et al (2018) Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Sci Rep 8:6502. Scholar
  7. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52PubMedPubMedCentralCrossRefGoogle Scholar
  8. Carroll D, Morton JJ, Beumer KJ et al (2006) Design, construction and in vitro testing of zinc finger nucleases. Nat Protoc 1:1329–1341PubMedCrossRefGoogle Scholar
  9. Čermák T, Baltes NJ, Čegan R et al (2015) High-frequency, precise modification of the tomato genome. Genome Biol 16:232. Scholar
  10. Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761PubMedPubMedCentralCrossRefGoogle Scholar
  11. Dong L, Wang F, Liu T et al (2014) Natural variation of TaGASR7-A1 affects grain length in common wheat under multiple cultivation conditions. Mol Breed 34:937–947CrossRefGoogle Scholar
  12. Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866PubMedPubMedCentralCrossRefGoogle Scholar
  13. Dvorak J (2001) Triticum species (Wheat). In: Brenner S, Miller JH (eds) Encyclopedia of genetics. Academic, New York, pp 2060–2068. Scholar
  14. Dvořák J (2009) Triticeae genome structure and evolution. In: Muehlbauer G, Feuillet C (eds) Genetics and genomics of the Triticeae. Springer, New York, pp 685–711CrossRefGoogle Scholar
  15. Endo M, Mikami M, Toki S (2015) Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol 56:41–47PubMedCrossRefPubMedCentralGoogle Scholar
  16. Feng B, Dong Z, Xu Z et al (2010) Molecular analysis of lipoxygenase (LOX) genes in common wheat and phylogenetic investigation of LOX proteins from model and crop plants. J Cereal Sci 52:387–394CrossRefGoogle Scholar
  17. Feng Z, Mao Y, Xu N et al (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci 111:4632–4637PubMedCrossRefGoogle Scholar
  18. Freiermuth JL, Powell Castilla IJ, Gallicano GI (2018) Toward a CRISPR picture: use of CRISPR/Cas9 to model diseases in human stem cells in vitro. J Cell Biochem 119:62–68PubMedCrossRefGoogle Scholar
  19. Fu Y, Foden JA, Khayter C et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Nanotechnol 31:822–826Google Scholar
  20. Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405PubMedPubMedCentralCrossRefGoogle Scholar
  21. Gao J, Wang G, Ma S et al (2015) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87:99–110PubMedPubMedCentralCrossRefGoogle Scholar
  22. Gapinske M, Luu A, Winter J et al (2018) CRISPR-SKIP: programmable gene splicing with single base editors. Genome Biol 19:1–11CrossRefGoogle Scholar
  23. Gil-Humanes J, Wang Y, Liang Z et al (2017) High efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J 89:1251–1262CrossRefGoogle Scholar
  24. Godfray HCJ, Beddington JR, Crute IR et al (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818PubMedCrossRefPubMedCentralGoogle Scholar
  25. Haque E, Taniguchi H, Hassan MM et al (2018) Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: recent progress, prospects, and challenges. Front Plant Sci 9:1–12CrossRefGoogle Scholar
  26. Hyun Y, Kim J, Cho SW et al (2015) Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles. Planta 241:271–284PubMedCrossRefPubMedCentralGoogle Scholar
  27. Jansen R, van Embden JD, Gaastra W et al (2002) Identification of a novel family of sequence repeats among prokaryotes. OMICS 6:23–33PubMedCrossRefPubMedCentralGoogle Scholar
  28. Jiang W, Zhou H, Bi H et al (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188. Scholar
  29. Jones HD (2015) Regulatory uncertainty over genome editing. Nat Plants 1:14011. Scholar
  30. Jordan KW, Wang S, Lun Y et al (2015) A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biol 16:1–18CrossRefGoogle Scholar
  31. Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55PubMedCrossRefPubMedCentralGoogle Scholar
  32. Kamburova VS, Nikitina EV, Shermatov SE et al (2017) Genome editing in plants: an overview of tools and applications. Int J Agron 2017:1–15CrossRefGoogle Scholar
  33. Kanchiswamy CN, Malnoy M, Velasco R et al (2015) Non-GMO genetically edited crop plants. Trends Biotechnol 33:489–491PubMedCrossRefGoogle Scholar
  34. Kim D, Alptekin B, Budak H (2018) CRISPR/Cas9 genome editing in wheat. Funct Integr Genomics 18:31–41PubMedPubMedCentralCrossRefGoogle Scholar
  35. Krasileva KV, Vasquez-Gross HA, Howell T et al (2017) Uncovering hidden variation in polyploid wheat. Proc Natl Acad Sci 114:E913–E921. Scholar
  36. Kusch S, Pesch L, Panstruga R (2016) Comprehensive phylogenetic analysis sheds light on the diversity and origin of the MLO family of integral membrane proteins. Genome Biol Evol 8:878–895PubMedPubMedCentralCrossRefGoogle Scholar
  37. Lawrenson T, Shorinola O, Stacey N et al (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16:258. Scholar
  38. Li J-F, Norville JE, Aach J et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Nanotechnol 31:688–691. Scholar
  39. Li Z, Liu Z-B, Xing A et al (2015) Cas9-guide RNA directed genome editing in soybean. Plant Physiol 169:960–970PubMedPubMedCentralCrossRefGoogle Scholar
  40. Liang Z, Chen K, Li T et al (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261. Scholar
  41. Liang Z, Chen K, Zhang Y et al (2018) Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nat Protoc 13(3):413–430. Scholar
  42. Ling H-Q, Zhao S, Liu D et al (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90PubMedCrossRefGoogle Scholar
  43. Lombardo A, Cesana D, Genovese P et al (2011) Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nat Methods 8:861–869PubMedCrossRefGoogle Scholar
  44. Malnoy M, Viola R, Jung M-H et al (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1–9CrossRefGoogle Scholar
  45. Mao Y, Zhang H, Xu N et al (2013) Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant 6:2008–2011PubMedPubMedCentralCrossRefGoogle Scholar
  46. Minkenberg B, Wheatley M, Yang Y (2017) CRISPR/Cas9-enabled multiplex genome editing and its application. In: Weeks DP, Yang B (eds) Progress in molecular biology and translational science, vol 149. Academic, Netherlands, pp 111–132Google Scholar
  47. Morineau C, Bellec Y, Tellier F et al (2017) Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnol J 15:729–739PubMedPubMedCentralCrossRefGoogle Scholar
  48. Platt RJ, Chen S, Zhou Y et al (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159:440–455PubMedPubMedCentralCrossRefGoogle Scholar
  49. Rath D, Amlinger L, Rath A et al (2015) The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie 117:119–128PubMedCrossRefGoogle Scholar
  50. Richardson CD, Ray GJ, DeWitt MA et al (2016) Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Nanotechnol 34:339–344Google Scholar
  51. Sánchez-León S, Gil-Humanes J, Ozuna CV et al (2018) Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16:902–910PubMedCrossRefGoogle Scholar
  52. Schenkwein D, Ylä-Herttuala S (2018) Gene editing of human embryos with CRISPR/Cas9: great promise coupled with important caveats. Mol Ther 26:659–660PubMedPubMedCentralCrossRefGoogle Scholar
  53. Shan Q, Wang Y, Li J et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Nanotechnol 31:686–688Google Scholar
  54. Shan Q, Wang Y, Li J et al (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9:2395–2410. Scholar
  55. Singh M, Kumar M, Albertsen MC et al (2018) Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum aestivum L.). Plant Mol Biol 97:371–383PubMedCrossRefPubMedCentralGoogle Scholar
  56. Smulders MR, Jouanin A, Gilissen LJ (2017) Gene editing using CRISPR/Cas9 to modify or remove gliadins from wheat and produce coeliac disease epitope-free wheat. In: Koehler P (ed) Proceedings of the 31st meeting of the working group on Prolamin analysis and toxicity, Minden, pp 63–68Google Scholar
  57. Svitashev S, Schwartz C, Lenderts B et al (2016) Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat Commun 7:13274PubMedPubMedCentralCrossRefGoogle Scholar
  58. Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271PubMedCrossRefPubMedCentralGoogle Scholar
  59. Thurtle-Schmidt DM, Lo TW (2018) Molecular biology at the cutting edge: a review on CRISPR/CAS9 gene editing for undergraduates. Biochem Mol Biol Educ 46:195–205PubMedPubMedCentralCrossRefGoogle Scholar
  60. Uauy C, Wulff BB, Dubcovsky J (2017) Combining traditional mutagenesis with new high-throughput sequencing and genome editing to reveal hidden variation in polyploid wheat. Annu Rev Genet 51:435–454PubMedCrossRefPubMedCentralGoogle Scholar
  61. Upadhyay SK, Kumar J, Alok A et al (2013) RNA–guided genome editing for target gene mutations in wheat. G3. Genes Genomes Genet 3:2233–2238Google Scholar
  62. Wang S, Wong D, Forrest K et al (2014a) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796PubMedPubMedCentralCrossRefGoogle Scholar
  63. Wang Y, Cheng X, Shan Q et al (2014b) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Nanotechnol 32:947–951Google Scholar
  64. Wang W, Akhunova A, Chao S et al (2016) Optimizing multiplex CRISPR/Cas9-based genome editing for wheat. BioRxiv.
  65. Wang W, Pan Q, He F et al (2018) Transgenerational CRISPR–Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J 1:65–74PubMedPubMedCentralCrossRefGoogle Scholar
  66. Weinthal DM, Gürel F (2016) Plant genome editing and its applications in cereals. In: Manohar R (ed) Genetic engineering: an insight into the strategies and applications. InTech, UK, pp 63–73Google Scholar
  67. Wolt JD (2017) Safety, security, and policy considerations for plant genome editing. In: Weeks DP, Yang B (eds) Progress in molecular biology and translational science, vol 149. Elsevier, Amsterdam, pp 215–241Google Scholar
  68. Xu R-F, Li H, Qin R-Y et al (2015) Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci Rep 5:11491PubMedPubMedCentralCrossRefGoogle Scholar
  69. Yang Z, Bai Z, Li X et al (2012) SNP identification and allelic-specific PCR markers development for TaGW2, a gene linked to wheat kernel weight. Theor Appl Genet 125:1057–1068PubMedCrossRefPubMedCentralGoogle Scholar
  70. Zhang Y, Liang Z, Zong Y et al (2016a) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617. Scholar
  71. Zhang Z, Mao Y, Ha S et al (2016b) A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis. Plant Cell Rep 35:1519–1533PubMedCrossRefPubMedCentralGoogle Scholar
  72. Zhang Y, Bai Y, Wu G et al (2017) Simultaneous modification of three homoeologs of ta EDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J 91:714–724PubMedCrossRefGoogle Scholar
  73. Zong Y, Wang Y, Li C et al (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Nanotechnol 35:438–440Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Soleyman Dayani
    • 1
  • Mohammad R. Sabzalian
    • 2
    Email author
  • Maryam Mazaheri-Tirani
    • 3
  1. 1.Department of Agricultural BiotechnologyPayame Noor University (PNU)TehranIran
  2. 2.Department of Agronomy and Plant Breeding, College of AgricultureIsfahan University of TechnologyIsfahanIran
  3. 3.Department of Biology, Faculty of ScienceUniversity of JiroftJiroftIran

Personalised recommendations