Skip to main content

Tricuspid Valve Disease

  • Chapter
  • First Online:
Heart Valve Disease
  • 915 Accesses

Abstract

Increasing interest in the tricuspid valve has been stimulated by numerous outcomes studies showing the significant role of tricuspid regurgitation (TR) on outcomes. Primary TR represents a small number of the patients presenting with symptomatic disease. Understanding of the anatomy of the right heart and tricuspid valve helps elucidate the multiple mechanisms that result in secondary TR. Echocardiography remains a primary imaging modality for the assessment of disease morphology and severity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

Three-dimensional

ASE:

American Society of Echocardiography

CMR:

Cardiac magnetic resonance

GE:

Gastro-esophageal

IVC:

Inferior vena cava

MSCT:

Multi-slice computed tomography

PISA:

Proximal isovelocity surface area

RA:

Right atrium

ROA:

Regurgitant orifice area

RV:

Right ventricular

SVC:

Superior vena cava

TEE:

Transesophageal echocardiography

TR:

Tricuspid regurgitation

TTE:

Transthoracic echocardiography

TV:

Tricuspid valve

VCA:

Vena contracta area

References

  1. Nath J, Foster E, Heidenreich PA. Impact of tricuspid regurgitation on long-term survival. J Am Coll Cardiol. 2004;43:405–9.

    Article  PubMed  Google Scholar 

  2. Lee JW, Song JM, Park JP, Kang DH, Song JK. Long-term prognosis of isolated significant tricuspid regurgitation. Circ J. 2010;74:375–80.

    Article  PubMed  Google Scholar 

  3. Neuhold S, Huelsmann M, Pernicka E, Graf A, Bonderman D, Adlbrecht C, Binder T, Maurer G, Pacher R, Mascherbauer J. Impact of tricuspid regurgitation on survival in patients with chronic heart failure: unexpected findings of a long-term observational study. Eur Heart J. 2013;34:844–52.

    Article  CAS  PubMed  Google Scholar 

  4. Calafiore AM, Gallina S, Iaco AL, Contini M, Bivona A, Gagliardi M, Bosco P, Di Mauro M. Mitral valve surgery for functional mitral regurgitation: should moderate-or-more tricuspid regurgitation be treated? a propensity score analysis. Ann Thorac Surg. 2009;87:698–703.

    Article  PubMed  Google Scholar 

  5. Mascherbauer J, Kammerlander AA, Marzluf BA, Graf A, Kocher A, Bonderman D. Prognostic impact of tricuspid regurgitation in patients undergoing aortic valve surgery for aortic stenosis. PLoS One. 2015;10:e0136024.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Dahou A, Magne J, Clavel MA, Capoulade R, Bartko PE, Bergler-Klein J, Senechal M, Mundigler G, Burwash I, Ribeiro HB, O’Connor K, Mathieu P, Baumgartner H, Dumesnil JG, Rosenhek R, Larose E, Rodes-Cabau J, Pibarot P. Tricuspid regurgitation is associated with increased risk of mortality in patients with low-flow low-gradient aortic stenosis and reduced ejection fraction: results of the Multicenter TOPAS Study (true or pseudo-severe aortic stenosis). JACC Cardiovasc Interv. 2015;8:588–96.

    Article  PubMed  Google Scholar 

  7. Varadarajan P, Pai RG. Prognostic implications of tricuspid regurgitation in patients with severe aortic regurgitation: results from a cohort of 756 patients. Interact Cardiovasc Thorac Surg. 2012;14:580–4.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ohno Y, Attizzani GF, Capodanno D, Cannata S, Dipasqua F, Imme S, Barbanti M, Ministeri M, Caggegi A, Pistritto AM, Chiaranda M, Ronsivalle G, Giaquinta S, Farruggio S, Mangiafico S, Scandura S, Tamburino C, Capranzano P, Grasso C. Association of tricuspid regurgitation with clinical and echocardiographic outcomes after percutaneous mitral valve repair with the MitraClip System: 30-day and 12-month follow-up from the GRASP Registry. Eur Heart J Cardiovasc Imaging. 2014;15:1246–55.

    Article  PubMed  Google Scholar 

  9. Lindman BR, Maniar HS, Jaber WA, Lerakis S, Mack MJ, Suri RM, Thourani VH, Babaliaros V, Kereiakes DJ, Whisenant B, Miller DC, Tuzcu EM, Svensson LG, Xu K, Doshi D, Leon MB, Zajarias A. Effect of tricuspid regurgitation and the right heart on survival after transcatheter aortic valve replacement: insights from the placement of aortic transcatheter valves II inoperable cohort. Circ Cardiovasc Interv. 2015;8:e002073.

    Article  PubMed  Google Scholar 

  10. Di Mauro M, Bivona A, Iaco AL, Contini M, Gagliardi M, Varone E, Gallina S, Calafiore AM. Mitral valve surgery for functional mitral regurgitation: prognostic role of tricuspid regurgitation. Eur J Cardiothorac Surg. 2009;35:635–9. discussion 639-40.

    Article  PubMed  Google Scholar 

  11. Henein MY, O'Sullivan CA, Li W, Sheppard M, Ho Y, Pepper J, Gibson DG. Evidence for rheumatic valve disease in patients with severe tricuspid regurgitation long after mitral valve surgery: the role of 3D echo reconstruction. J Heart Valve Dis. 2003;12:566–72.

    PubMed  Google Scholar 

  12. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP III, Fleisher LA, Jneid H, Mack MJ, McLeod CJ, O'Gara PT, Rigolin VH, Sundt TM III, Thompson A. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017;70:252–89.

    Article  PubMed  Google Scholar 

  13. Baumgartner H, Falk V, Bax JJ, De Bonis M, et al. 2017 ESC/EACTS guidelines for the management of valvular heart disease: the task force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2017;38(36):2739–91.

    Article  PubMed  Google Scholar 

  14. Xanthos T, Dalivigkas I, Ekmektzoglou KA. Anatomic variations of the cardiac valves and papillary muscles of the right heart. Ital J Anat Embryol. 2011;116:111–26.

    PubMed  Google Scholar 

  15. Martinez RM, O’Leary PW, Anderson RH. Anatomy and echocardiography of the normal and abnormal tricuspid valve. Cardiol Young. 2006;16(Suppl 3):4–11.

    Article  PubMed  Google Scholar 

  16. Fawzy H, Fukamachi K, Mazer CD, Harrington A, Latter D, Bonneau D, Errett L. Complete mapping of the tricuspid valve apparatus using three-dimensional sonomicrometry. J Thorac Cardiovasc Surg. 2011;141:1037–43.

    Article  PubMed  Google Scholar 

  17. Hahn RT. State-of-the-art review of echocardiographic imaging in the evaluation and treatment of functional tricuspid regurgitation. Circ Cardiovasc Imaging. 2016;9:e005332.

    Article  PubMed  Google Scholar 

  18. Rodés-Cabau J, Hahn RT, Latib A, Laule M, Lauten A, Maisano F, Schofer J, Campelo-Parada F, Puri R, Vahanian A. Transcatheter therapies for treating tricuspid regurgitation. J Am Coll Cardiol. 2016;67:1829–45.

    Article  PubMed  Google Scholar 

  19. Taramasso M, Pozzoli A, Basso C, Thiene G, Denti P, Kuwata S, Nietlispach F, Alfieri O, Hahn RT, Nickenig G, Schofer J, Leon MB, Reisman M, Maisano F. Compare and contrast tricuspid and mitral valve anatomy: interventional perspectives for transcatheter tricuspid valve therapies. EuroIntervention. 2018;13(16):1889–98.

    Article  PubMed  Google Scholar 

  20. Fukuda S, Saracino G, Matsumura Y, Daimon M, Tran H, Greenberg NL, Hozumi T, Yoshikawa J, Thomas JD, Shiota T. Three-dimensional geometry of the tricuspid annulus in healthy subjects and in patients with functional tricuspid regurgitation: a real-time, 3-dimensional echocardiographic study. Circulation. 2006;114:I492–8.

    PubMed  Google Scholar 

  21. Antunes MJ, Barlow JB. Management of tricuspid valve regurgitation. Heart. 2007;93:271–6.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shah PM, Raney AA. Tricuspid valve disease. Curr Probl Cardiol. 2008;33:47–84.

    Article  PubMed  Google Scholar 

  23. Kostucki W, Vandenbossche JL, Friart A, Englert M. Pulsed Doppler regurgitant flow patterns of normal valves. Am J Cardiol. 1986;58:309–13.

    Article  CAS  PubMed  Google Scholar 

  24. Anwar AM, Geleijnse ML, Soliman OI, McGhie JS, Frowijn R, Nemes A, van den Bosch AE, Galema TW, Ten Cate FJ. Assessment of normal tricuspid valve anatomy in adults by real-time three-dimensional echocardiography. Int J Cardiovasc Imaging. 2007;23:717–24.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tretter JT, Sarwark AE, Anderson RH, Spicer DE. Assessment of the anatomical variation to be found in the normal tricuspid valve. Clin Anat. 2016;29:399–407.

    Article  PubMed  Google Scholar 

  26. Karas S Jr, Elkins RC. Mechanism of function of the mitral valve leaflets, chordae tendineae and left ventricular papillary muscles in dogs. Circ Res. 1970;26:689–96.

    Article  PubMed  Google Scholar 

  27. Silver MD, Lam JH, Ranganathan N, Wigle ED. Morphology of the human tricuspid valve. Circulation. 1971;43:333–48.

    Article  CAS  PubMed  Google Scholar 

  28. Lim KO. Mechanical properties and ultrastructure of normal human tricuspid valve chordae tendineae. Jpn J Physiol. 1980;30:455–64.

    Article  CAS  PubMed  Google Scholar 

  29. Messer S, Moseley E, Marinescu M, Freeman C, Goddard M, Nair S. Histologic analysis of the right atrioventricular junction in the adult human heart. J Heart Valve Dis. 2012;21:368–73.

    PubMed  Google Scholar 

  30. Dreyfus GD, Corbi PJ, Chan KM, Bahrami T. Secondary tricuspid regurgitation or dilatation: which should be the criteria for surgical repair? Ann Thorac Surg. 2005;79:127–32.

    Article  PubMed  Google Scholar 

  31. Ton-Nu TT, Levine RA, Handschumacher MD, Dorer DJ, Yosefy C, Fan D, Hua L, Jiang L, Hung J. Geometric determinants of functional tricuspid regurgitation: insights from 3-dimensional echocardiography. Circulation. 2006;114:143–9.

    Article  PubMed  Google Scholar 

  32. Dreyfus J, Durand-Viel G, Raffoul R, Alkhoder S, Hvass U, Radu C, Al-Attar N, Ghodbhane W, Attias D, Nataf P, Vahanian A, Messika-Zeitoun D. Comparison of 2-dimensional, 3-dimensional, and surgical measurements of the tricuspid annulus size: clinical implications. Circ Cardiovasc Imaging. 2015;8:e003241.

    Article  PubMed  Google Scholar 

  33. Mahmood F, Kim H, Chaudary B, Bergman R, Matyal R, Gerstle J, Gorman JH III, Gorman RC, Khabbaz KR. Tricuspid annular geometry: a three-dimensional transesophageal echocardiographic study. J Cardiothorac Vasc Anesth. 2013;27:639–46.

    Article  PubMed  Google Scholar 

  34. Yiwu L, Yingchun C, Jianqun Z, Bin Y, Ping B. Exact quantitative selective annuloplasty of the tricuspid valve. J Thorac Cardiovasc Surg. 2001;122:611–4.

    Article  CAS  PubMed  Google Scholar 

  35. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23:685–713. quiz 786-8.

    Article  PubMed  Google Scholar 

  36. Mahlon MA, Yoon HC. CT angiography of the superior vena cava: normative values and implications for central venous catheter position. J Vasc Interv Radiol. 2007;18:1106–10.

    Article  PubMed  Google Scholar 

  37. Sonavane SK, Milner DM, Singh SP, Abdel Aal AK, Shahir KS, Chaturvedi A. Comprehensive imaging review of the superior vena cava. Radiographics. 2015;35:1873–92.

    Article  PubMed  Google Scholar 

  38. Lin FY, Devereux RB, Roman MJ, Meng J, Jow VM, Simprini L, Jacobs A, Weinsaft JW, Shaw LJ, Berman DS, Callister TQ, Min JK. The right sided great vessels by cardiac multidetector computed tomography: normative reference values among healthy adults free of cardiopulmonary disease, hypertension, and obesity. Acad Radiol. 2009;16:981–7.

    Article  PubMed  Google Scholar 

  39. Chandraratna PN, Lopez JM, Fernandez JJ, Cohen LS. Echocardiographic detection of tricuspid valve prolapse. Circulation. 1975;51:823–6.

    Article  CAS  PubMed  Google Scholar 

  40. Rippe JM, Angoff G, Sloss LJ, Wynne J, Alpert JS. Multiple floppy valves: an echocardiographic syndrome. Am J Med. 1979;66:817–24.

    Article  CAS  PubMed  Google Scholar 

  41. Schlamowitz RA, Gross S, Keating E, Pitt W, Mazur J. Tricuspid valve prolapse: a common occurrence in the click-murmur syndrome. J Clin Ultrasound. 1982;10:435–9.

    Article  CAS  PubMed  Google Scholar 

  42. Emine BS, Murat A, Mehmet B, Mustafa K, Gokturk I. Flail mitral and tricuspid valves due to myxomatous disease. Eur J Echocardiogr. 2008;9:304–5.

    PubMed  Google Scholar 

  43. van Son JA, Danielson GK, Schaff HV, Miller FA Jr. Traumatic tricuspid valve insufficiency. Experience in thirteen patients. J Thorac Cardiovasc Surg. 1994;108:893–8.

    PubMed  Google Scholar 

  44. Choi JS, Kim EJ. Simultaneous rupture of the mitral and tricuspid valves with left ventricular rupture caused by blunt trauma. Ann Thorac Surg. 2008;86:1371–3.

    Article  PubMed  Google Scholar 

  45. Reddy VK, Nanda S, Bandarupalli N, Pothineni KR, Nanda NC. Traumatic tricuspid papillary muscle and chordae rupture: emerging role of three-dimensional echocardiography. Echocardiography. 2008;25:653–7.

    Article  PubMed  Google Scholar 

  46. Braverman AC, Coplen SE, Mudge GH, Lee RT. Ruptured chordae tendineae of the tricuspid valve as a complication of endomyocardial biopsy in heart transplant patients. Am J Cardiol. 1990;66:111–3.

    Article  CAS  PubMed  Google Scholar 

  47. Mielniczuk L, Haddad H, Davies RA, Veinot JP. Tricuspid valve chordal tissue in endomyocardial biopsy specimens of patients with significant tricuspid regurgitation. J Heart Lung Transplant. 2005;24:1586–90.

    Article  PubMed  Google Scholar 

  48. Sloan KP, Bruce CJ, Oh JK, Rihal CS. Complications of echocardiography-guided endomyocardial biopsy. J Am Soc Echocardiogr. 2009;22:324 e1–4.

    Article  Google Scholar 

  49. Christogiannis Z, Korantzopoulos P, Pappas K, Pitsis A. Flail septal leaflet of the tricuspid valve due to rupture of chordae tendineae ten years after pacemaker implantation. Int J Cardiol. 2014;176(2):e41–6.

    Article  PubMed  Google Scholar 

  50. Waller BF, Howard J, Fess S. Pathology of tricuspid valve stenosis and pure tricuspid regurgitation—Part I. Clin Cardiol. 1995;18:97–102.

    Article  CAS  PubMed  Google Scholar 

  51. Waller BF, Howard J, Fess S. Pathology of tricuspid valve stenosis and pure tricuspid regurgitation—Part II. Clin Cardiol. 1995;18:167–74.

    Article  CAS  PubMed  Google Scholar 

  52. Sultan FA, Moustafa SE, Tajik J, Warsame T, Emani U, Alharthi M, Mookadam F. Rheumatic tricuspid valve disease: an evidence-based systematic overview. J Heart Valve Dis. 2010;19:374–82.

    PubMed  Google Scholar 

  53. Daniels SJ, Mintz GS, Kotler MN. Rheumatic tricuspid valve disease: two-dimensional echocardiographic, hemodynamic, and angiographic correlations. Am J Cardiol. 1983;51:492–6.

    Article  CAS  PubMed  Google Scholar 

  54. Kerut KD, Kerut EK. Echo diagnosis of rheumatic tricuspid valve disease. Echocardiography. 2014;31(5):680–1.

    Article  PubMed  Google Scholar 

  55. Osler W. The Gulstonian lectures, on malignant endocarditis. Br Med J. 1885;1:577–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chan P, Ogilby JD, Segal B. Tricuspid valve endocarditis. Am Heart J. 1989;117:1140–6.

    Article  CAS  PubMed  Google Scholar 

  57. Robbins MJ, Frater RW, Soeiro R, Frishman WH, Strom JA. Influence of vegetation size on clinical outcome of right-sided infective endocarditis. Am J Med. 1986;80:165–71.

    Article  CAS  PubMed  Google Scholar 

  58. Chambers HF, Korzeniowski OM, Sande MA. Staphylococcus aureus endocarditis: clinical manifestations in addicts and nonaddicts. Medicine (Baltimore). 1983;62:170–7.

    Article  CAS  Google Scholar 

  59. Robbins MJ, Soeiro R, Frishman WH, Strom JA. Right-sided valvular endocarditis: etiology, diagnosis, and an approach to therapy. Am Heart J. 1986;111:128–35.

    Article  CAS  PubMed  Google Scholar 

  60. Frontera JA, Gradon JD. Right-side endocarditis in injection drug users: review of proposed mechanisms of pathogenesis. Clin Infect Dis. 2000;30:374–9.

    Article  CAS  PubMed  Google Scholar 

  61. Howard RJ, Drobac M, Rider WD, Keane TJ, Finlayson J, Silver MD, Wigle ED, Rakowski H. Carcinoid heart disease: diagnosis by two-dimensional echocardiography. Circulation. 1982;66:1059–65.

    Article  CAS  PubMed  Google Scholar 

  62. Bhattacharyya S, Toumpanakis C, Burke M, Taylor AM, Caplin ME, Davar J. Features of carcinoid heart disease identified by 2- and 3-dimensional echocardiography and cardiac MRI. Circ Cardiovasc Imaging. 2010;3:103–11.

    Article  PubMed  Google Scholar 

  63. Moerman VM, Dewilde D, Hermans K. Carcinoid heart disease: typical findings on echocardiography and cardiac magnetic resonance. Acta Cardiol. 2012;67:245–8.

    Article  PubMed  Google Scholar 

  64. Lin G, Nishimura RA, Connolly HM, Dearani JA, Sundt TM III, Hayes DL. Severe symptomatic tricuspid valve regurgitation due to permanent pacemaker or implantable cardioverter-defibrillator leads. J Am Coll Cardiol. 2005;45:1672–5.

    Article  PubMed  Google Scholar 

  65. Kim JB, Spevack DM, Tunick PA, Bullinga JR, Kronzon I, Chinitz LA, Reynolds HR. The effect of transvenous pacemaker and implantable cardioverter defibrillator lead placement on tricuspid valve function: an observational study. J Am Soc Echocardiogr. 2008;21:284–7.

    Article  PubMed  Google Scholar 

  66. Mediratta A, Addetia K, Yamat M, Moss JD, Nayak HM, Burke MC, Weinert L, Maffessanti F, Jeevanandam V, Mor-Avi V, Lang RM. 3D echocardiographic location of implantable device leads and mechanism of associated tricuspid regurgitation. J Am Coll Cardiol Img. 2014;7:337–47.

    Article  Google Scholar 

  67. Miglioranza MH, Becker D, Jimenez-Nacher JJ, Moya JL, Golfin CF, Zamorano JL. A new view of an unusual pacemaker complication: role of three-dimensional transthoracic echocardiography. Echocardiography. 2013;30:E164–6.

    Article  PubMed  Google Scholar 

  68. Addetia K, Maffessanti F, Mediratta A, Yamat M, Weinert L, Moss JD, Nayak HM, Burke MC, Patel AR, Kruse E, Jeevanandam V, Mor-Avi V, Lang RM. Impact of implantable transvenous device lead location on severity of tricuspid regurgitation. J Am Soc Echocardiogr. 2014;27(11):1164–75.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hoke U, Auger D, Thijssen J, Wolterbeek R, van der Velde ET, Holman ER, Schalij MJ, Bax JJ, Delgado V, Marsan NA. Significant lead-induced tricuspid regurgitation is associated with poor prognosis at long-term follow-up. Heart. 2014;100:960–8.

    Article  PubMed  Google Scholar 

  70. Franceschi F, Thuny F, Giorgi R, Sanaa I, Peyrouse E, Assouan X, Prévôt S, Bastard E, Habib G, Deharo J-C. Incidence, risk factors, and outcome of traumatic tricuspid regurgitation after percutaneous ventricular lead removal. J Am Coll Cardiol. 2009;53:2168–74.

    Article  PubMed  Google Scholar 

  71. Booker OJ, Nanda NC. Echocardiographic assessment of Ebstein’s anomaly. Echocardiography. 2015;32(Suppl 2):S177–88.

    Article  PubMed  Google Scholar 

  72. Patel V, Nanda NC, Rajdev S, Mehmood F, Velayudhan D, Vengala S, Copeland RB, Madadi P. Live/real time three-dimensional transthoracic echocardiographic assessment of Ebstein’s anomaly. Echocardiography. 2005;22:847–54.

    Article  PubMed  Google Scholar 

  73. Misra KP, Hildner FJ, Cohen LS, Narula OS, Samet P. Aneurysm of the membranous ventricular septum. A mechanism for spontaneous closure of ventricular septal defect. N Engl J Med. 1970;283:58–61.

    Article  CAS  PubMed  Google Scholar 

  74. Nugent EW, Freedom RM, Rowe RD, Wagner HR, Rees JK. Aneurysm of the membraous septum in ventricular septal defect. Circulation. 1977;56:I82–4.

    Article  CAS  PubMed  Google Scholar 

  75. Beerman LB, Park SC, Fischer DR, Fricker FJ, Mathews RA, Neches WH, Lenox CC, Zuberbuhler JR. Ventricular septal defect associated with aneurysm of the membranous septum. J Am Coll Cardiol. 1985;5:118–23.

    Article  CAS  PubMed  Google Scholar 

  76. Shankarappa RK, Papaiah S, Karur S, Math RS, Nanjappa MC. Giant right atrium due to congenital dysplastic tricuspid valve in an elderly female patient. Echocardiography. 2013;30:E128–31.

    Article  PubMed  Google Scholar 

  77. Spinner EM, Shannon P, Buice D, Jimenez JH, Veledar E, Del Nido PJ, Adams DH, Yoganathan AP. In vitro characterization of the mechanisms responsible for functional tricuspid regurgitation. Circulation. 2011;124:920–9.

    Article  PubMed  Google Scholar 

  78. Spinner EM, Buice D, Yap CH, Yoganathan AP. The effects of a three-dimensional, saddle-shaped annulus on anterior and posterior leaflet stretch and regurgitation of the tricuspid valve. Ann Biomed Eng. 2012;40:996–1005.

    Article  PubMed  Google Scholar 

  79. Dell’Italia LJ. Anatomy and physiology of the right ventricle. Cardiol Clin. 2012;30:167–87.

    Article  PubMed  Google Scholar 

  80. Ryo K, Goda A, Onishi T, Delgado-Montero A, Tayal B, Champion HC, Simon MA, Mathier MA, Gladwin MT, Gorcsan J III. Characterization of right ventricular remodeling in pulmonary hypertension associated with patient outcomes by 3-dimensional wall motion tracking echocardiography. Circ Cardiovasc Imaging. 2015;8:e003176.

    Article  PubMed  Google Scholar 

  81. Palau-Caballero G, Walmsley J, Van Empel V, Lumens J, Delhaas T. Why septal motion is a marker of right ventricular failure in pulmonary arterial hypertension: mechanistic analysis using a computer model. Am J Physiol Heart Circ Physiol. 2017;312:H691–h700.

    Article  PubMed  Google Scholar 

  82. Fredriksson AG, Svalbring E, Eriksson J et al. 4D flow MRI can detect subtle right ventricular dysfunction in primary left ventricular disease. Journal of Magnetic Resonance Imaging: JMRI 2016;43:558–65.

    Article  PubMed  Google Scholar 

  83. MacNee W. Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease. Part One. Am J Respir Crit Care Med. 1994;150:833–52.

    Article  CAS  PubMed  Google Scholar 

  84. Bartelds B, Borgdorff MA, Smit-van Oosten A, Takens J, Boersma B, Nederhoff MG, Elzenga NJ, Gilst WH, De Windt LJ, Berger RMF. Differential responses of the right ventricle to abnormal loading conditions in mice: pressure vs. volume load. Eur J Heart Fail. 2011;13:1275–82.

    Article  CAS  PubMed  Google Scholar 

  85. Vonk-Noordegraaf A, Haddad F, Chin KM, Forfia PR, Kawut SM, Lumens J, Naeije R, Newman J, Oudiz RJ, Provencher S, Torbicki A, Voelkel NF, Hassoun PM. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol. 2013;62:D22–33.

    Article  PubMed  Google Scholar 

  86. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39 e14.

    Article  PubMed  Google Scholar 

  87. Naeije R, Brimioulle S, Dewachter L. Biomechanics of the right ventricle in health and disease (2013 Grover Conference series). Pulm Circ. 2014;4:395–406.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Guazzi M, Dixon D, Labate V, Beussink-Nelson L, Bandera F, Cuttica MJ, Shah SJ. RV contractile function and its coupling to pulmonary circulation in heart failure with preserved ejection fraction: stratification of clinical phenotypes and outcomes. JACC Cardiovasc Imaging. 2017;10(10 Pt B):1211–21.

    Article  PubMed  Google Scholar 

  89. Guazzi M, Bandera F, Pelissero G, Castelvecchio S, Menicanti L, Ghio S, Temporelli PL, Arena R. Tricuspid annular plane systolic excursion and pulmonary arterial systolic pressure relationship in heart failure: an index of right ventricular contractile function and prognosis. Am J Physiol Heart Circ Physiol. 2013;305:H1373–81.

    Article  CAS  PubMed  Google Scholar 

  90. Nochioka K, Querejeta Roca G, Claggett B, et al. Right ventricular function, right ventricular–pulmonary artery coupling, and heart failure risk in 4 us communities: The atherosclerosis risk in communities (aric) study. JAMA Cardiol. 2018;3(10):939–48.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Aubert R, Venner C, Huttin O, Haine D, Filippetti L, Guillaumot A, Mandry D, Marie PY, Juilliere Y, Chabot F, Chaouat A, Selton-Suty C. Three-dimensional echocardiography for the assessment of right ventriculo-arterial coupling. J Am Soc Echocardiogr. 2018;31:905–15.

    Article  PubMed  Google Scholar 

  92. Iacoviello M, Monitillo F, Citarelli G, Leone M, Grande D, Antoncecchi V, Rizzo C, Terlizzese P, Romito R, Caldarola P, Ciccone MM. Right ventriculo-arterial coupling assessed by two-dimensional strain: a new parameter of right ventricular function independently associated with prognosis in chronic heart failure patients. Int J Cardiol. 2017;241:318–21.

    Article  PubMed  Google Scholar 

  93. Singh JP, Evans JC, Levy D, Larson MG, Freed LA, Fuller DL, Lehman B, Benjamin EJ. Prevalence and clinical determinants of mitral, tricuspid, and aortic regurgitation (the Framingham Heart Study). Am J Cardiol. 1999;83:897–902.

    Article  CAS  PubMed  Google Scholar 

  94. Utsunomiya H, Itabashi Y, Mihara H, Berdejo J, Kobayashi S, Siegel RJ, Shiota T. Functional tricuspid regurgitation caused by chronic atrial fibrillation: a real-time 3-Dimensional Transesophageal Echocardiography Study. Circ Cardiovasc Imaging. 2017;10:e004897.

    Article  PubMed  Google Scholar 

  95. Topilsky Y, Khanna A, Le Tourneau T, Park S, Michelena H, Suri R, Mahoney DW, Enriquez-Sarano M. Clinical context and mechanism of functional tricuspid regurgitation in patients with and without pulmonary hypertension. Circ Cardiovasc Imaging. 2012;5:314–23.

    Article  PubMed  Google Scholar 

  96. Topilsky Y, Nkomo VT, Vatury O, Michelena HI, Letourneau T, Suri RM, Pislaru S, Park S, Mahoney DW, Biner S, Enriquez-Sarano M. Clinical outcome of isolated tricuspid regurgitation. JACC Cardiovasc Imaging. 2014;7:1185–94.

    Article  PubMed  Google Scholar 

  97. Mutlak D, Lessick J, Reisner SA, Aronson D, Dabbah S, Agmon Y. Echocardiography-based spectrum of severe tricuspid regurgitation: the frequency of apparently idiopathic tricuspid regurgitation. J Am Soc Echocardiogr. 2007;20:405–8.

    Article  PubMed  Google Scholar 

  98. Najib MQ, Vinales KL, Vittala SS, Challa S, Lee HR, Chaliki HP. Predictors for the development of severe tricuspid regurgitation with anatomically normal valve in patients with atrial fibrillation. Echocardiography. 2012;29:140–6.

    Article  PubMed  Google Scholar 

  99. Mascherbauer J, Kammerlander AA, Zotter-Tufaro C, Aschauer S, Duca F, Dalos D, Winkler S, Schneider M, Bergler-Klein J, Bonderman D. Presence of isolated tricuspid regurgitation should prompt the suspicion of heart failure with preserved ejection fraction. PLoS One. 2017;12:e0171542.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E, Grayburn PA, Hahn RT, Han Y, Hung J, Lang RM, Little SH, Shah DJ, Shernan S, Thavendiranathan P, Thomas JD, Weissman NJ. Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr. 2017;30:303–71.

    Article  PubMed  Google Scholar 

  101. Lancellotti P, Moura L, Pierard LA, Agricola E, Popescu BA, Tribouilloy C, Hagendorff A, Monin JL, Badano L, Zamorano JL. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur J Echocardiogr. 2010;11:307–32.

    Article  PubMed  Google Scholar 

  102. Thomas JD, Liu CM, Flachskampf FA, O'Shea JP, Davidoff R, Weyman AE. Quantification of jet flow by momentum analysis. An in vitro color Doppler flow study. Circulation. 1990;81:247–59.

    Article  CAS  PubMed  Google Scholar 

  103. Rivera JM, Mele D, Vandervoort PM, Morris E, Weyman AE, Thomas JD. Effective regurgitant orifice area in tricuspid regurgitation: clinical implementation and follow-up study. Am Heart J. 1994;128:927–33.

    Article  CAS  PubMed  Google Scholar 

  104. Francis DP, Willson K, Ceri Davies L, Florea VG, Coats AJ, Gibson DG. True shape and area of proximal isovelocity surface area (PISA) when flow convergence is hemispherical in valvular regurgitation. Int J Cardiol. 2000;73:237–42.

    Article  CAS  PubMed  Google Scholar 

  105. Rodriguez L, Anconina J, Flachskampf FA, Weyman AE, Levine RA, Thomas JD. Impact of finite orifice size on proximal flow convergence. Implications for Doppler quantification of valvular regurgitation. Circ Res. 1992;70:923–30.

    Article  CAS  PubMed  Google Scholar 

  106. Sugeng L, Weinert L, Lang RM. Real-time 3-dimensional color Doppler flow of mitral and tricuspid regurgitation: feasibility and initial quantitative comparison with 2-dimensional methods. J Am Soc Echocardiogr. 2007;20:1050–7.

    Article  PubMed  Google Scholar 

  107. de Agustin JA, Viliani D, Vieira C, Islas F, Marcos-Alberca P, Gomez de Diego JJ, Nunez-Gil IJ, Almeria C, Rodrigo JL, Luaces M, Garcia-Fernandez MA, Macaya C, Perez de Isla L. Proximal isovelocity surface area by single-beat three-dimensional color Doppler echocardiography applied for tricuspid regurgitation quantification. J Am Soc Echocardiogr. 2013;26:1063–72.

    Article  PubMed  Google Scholar 

  108. Velayudhan DE, Brown TM, Nanda NC, Patel V, Miller AP, Mehmood F, Rajdev S, Fang L, Frans EE, Vengala S, Madadi P, Yelamanchili P, Baysan O. Quantification of tricuspid regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area. Echocardiography. 2006;23:793–800.

    Article  PubMed  Google Scholar 

  109. Chen TE, Kwon SH, Enriquez-Sarano M, Wong BF, Mankad SV. Three-dimensional color Doppler echocardiographic quantification of tricuspid regurgitation orifice area: comparison with conventional two-dimensional measures. J Am Soc Echocardiogr. 2013;26:1143–52.

    Article  PubMed  Google Scholar 

  110. Chopra HK, Nanda NC, Fan P, Kapur KK, Goyal R, Daruwalla D, Pacifico A. Can two-dimensional echocardiography and Doppler color flow mapping identify the need for tricuspid valve repair? J Am Coll Cardiol. 1989;14:1266–74.

    Article  CAS  PubMed  Google Scholar 

  111. Gonzalez-Vilchez F, Zarauza J, Vazquez de Prada JA, Martin Duran R, Ruano J, Delgado C, Figueroa A. Assessment of tricuspid regurgitation by Doppler color flow imaging: angiographic correlation. Int J Cardiol. 1994;44:275–83.

    Article  CAS  PubMed  Google Scholar 

  112. Loeber CP, Goldberg SJ, Allen HD. Doppler echocardiographic comparison of flows distal to the four cardiac valves. J Am Coll Cardiol. 1984;4:268–72.

    Article  CAS  PubMed  Google Scholar 

  113. Meijboom EJ, Horowitz S, Valdes-Cruz LM, Sahn DJ, Larson DF, Oliveira Lima C. A Doppler echocardiographic method for calculating volume flow across the tricuspid valve: correlative laboratory and clinical studies. Circulation. 1985;71:551–6.

    Article  CAS  PubMed  Google Scholar 

  114. Hahn RT, Meduri CU, Davidson CJ, Lim S, Nazif TM, Ricciardi MJ, Rajagopal V, Ailawadi G, Vannan MA, Thomas JD, Fowler D, Rich S, Martin R, Ong G, Groothuis A, Kodali S. Early feasibility study of a transcatheter tricuspid valve annuloplasty: SCOUT trial 30-day results. J Am Coll Cardiol. 2017;69:1795–806.

    Article  PubMed  Google Scholar 

  115. Hahn RT, Zamorano JL. The need for a new tricuspid regurgitation grading scheme. Eur Heart J Cardiovasc Imaging. 2017;18:1342–3.

    Article  PubMed  Google Scholar 

  116. van Rosendael PJ, Delgado V, Bax JJ. The tricuspid valve and the right heart: anatomical, pathological and imaging specifications. EuroIntervention. 2015;11(Suppl W):W123–7.

    Article  PubMed  Google Scholar 

  117. van Rosendael PJ, Joyce E, Katsanos S, Debonnaire P, Kamperidis V, van der Kley F, Schalij MJ, Bax JJ, Ajmone Marsan N, Delgado V. Tricuspid valve remodelling in functional tricuspid regurgitation: multidetector row computed tomography insights. Eur Heart J Cardiovasc Imaging. 2016;17:96–105.

    PubMed  Google Scholar 

  118. van Rosendael PJ, Kamperidis V, Kong WK, van Rosendael AR, van der Kley F, Ajmone Marsan N, Delgado V, Bax JJ. Computed tomography for planning transcatheter tricuspid valve therapy. Eur Heart J. 2017;38:665–74.

    PubMed  Google Scholar 

  119. Kabasawa M, Kohno H, Ishizaka T, Ishida K, Funabashi N, Kataoka A, Matsumiya G. Assessment of functional tricuspid regurgitation using 320-detector-row multislice computed tomography: risk factor analysis for recurrent regurgitation after tricuspid annuloplasty. J Thorac Cardiovasc Surg. 2014;147:312–20.

    Article  PubMed  Google Scholar 

  120. Aquaro GD, Barison A, Todiere G, Festa P, Ait-Ali L, Lombardi M, Di Bella G. Cardiac magnetic resonance ‘virtual catheterization’ for the quantification of valvular regurgitations and cardiac shunt. J Cardiovasc Med (Hagerstown). 2015;16:663–70.

    Article  Google Scholar 

  121. Klein AL, Burstow DJ, Tajik AJ, Zachariah PK, Taliercio CP, Taylor CL, Bailey KR, Seward JB. Age-related prevalence of valvular regurgitation in normal subjects: a comprehensive color flow examination of 118 volunteers. J Am Soc Echocardiogr. 1990;3:54–63.

    Article  CAS  PubMed  Google Scholar 

  122. Medvedofsky D, Jimenez JL, Addetia K, Singh A, Lang RM, Mor-Avi V, Patel AR. Multi-parametric quantification of tricuspid regurgitation using cardiovascular magnetic resonance: a comparison to echocardiography. Eur J Radiol. 2017;86:213–20.

    Article  PubMed  Google Scholar 

  123. Fukuda S, Gillinov AM, Song JM, Daimon M, Kongsaerepong V, Thomas JD, Shiota T. Echocardiographic insights into atrial and ventricular mechanisms of functional tricuspid regurgitation. Am Heart J. 2006;152:1208–14.

    Article  PubMed  Google Scholar 

  124. Kim H-K, Kim Y-J, Park J-S, Kim KH, Kim K-B, Ahn H, Sohn D-W, Oh B-H, Park Y-B, Choi Y-S. Determinants of the severity of functional tricuspid regurgitation. Am J Cardiol. 2006;98:236–42.

    Article  PubMed  Google Scholar 

  125. Sagie A, Schwammenthal E, Padial LR, Vazquez de Prada JA, Weyman AE, Levine RA. Determinants of functional tricuspid regurgitation in incomplete tricuspid valve closure: Doppler color flow study of 109 patients. J Am Coll Cardiol. 1994;24:446–53.

    Article  CAS  PubMed  Google Scholar 

  126. Park YH, Song JM, Lee EY, Kim YJ, Kang DH, Song JK. Geometric and hemodynamic determinants of functional tricuspid regurgitation: a real-time three-dimensional echocardiography study. Int J Cardiol. 2008;124:160–5.

    Article  PubMed  Google Scholar 

  127. Varadarajan P, Pai RG. Tricuspid regurgitation in patients with severe mitral regurgitation and normal left ventricular ejection fraction: risk factors and prognostic implications in a cohort of 895 patients. J Heart Valve Dis. 2010;19:412–9.

    PubMed  Google Scholar 

  128. Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Baron-Esquivias G, Baumgartner H, Borger MA, Carrel TP, De Bonis M, Evangelista A, Falk V, Lung B, Lancellotti P, Pierard L, Price S, Schafers HJ, Schuler G, Stepinska J, Swedberg K, Takkenberg J, Von Oppell UO, Windecker S, Zamorano JL, Zembala M, Bax JJ, Ceconi C, Dean V, Deaton C, Fagard R, Funck-Brentano C, Hasdai D, Hoes A, Kirchhof P, Knuuti J, Kolh P, McDonagh T, Moulin C, Popescu BA, Reiner Z, Sechtem U, Sirnes PA, Tendera M, Torbicki A, Von Segesser L, Badano LP, Bunc M, Claeys MJ, Drinkovic N, Filippatos G, Habib G, Kappetein AP, Kassab R, Lip GY, Moat N, Nickenig G, Otto CM, Pepper J, Piazza N, Pieper PG, Rosenhek R, Shuka N, Schwammenthal E, Schwitter J, Mas PT, Trindade PT, Walther T. Guidelines on the management of valvular heart disease (version 2012): the Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur J Cardiothorac Surg. 2012;42:S1–44.

    Article  PubMed  Google Scholar 

  129. Van de Veire NR, Braun J, Delgado V, Versteegh MI, Dion RA, Klautz RJ, Bax JJ. Tricuspid annuloplasty prevents right ventricular dilatation and progression of tricuspid regurgitation in patients with tricuspid annular dilatation undergoing mitral valve repair. J Thorac Cardiovasc Surg. 2011;141:1431–9.

    Article  PubMed  Google Scholar 

  130. Fukuda S, Song JM, Gillinov AM, McCarthy PM, Daimon M, Kongsaerepong V, Thomas JD, Shiota T. Tricuspid valve tethering predicts residual tricuspid regurgitation after tricuspid annuloplasty. Circulation. 2005;111:975–9.

    Article  PubMed  Google Scholar 

  131. Sukmawan R, Watanabe N, Ogasawara Y, Yamaura Y, Yamamoto K, Wada N, Kume T, Okura H, Yoshida K. Geometric changes of tricuspid valve tenting in tricuspid regurgitation secondary to pulmonary hypertension quantified by novel system with transthoracic real-time 3-dimensional echocardiography. J Am Soc Echocardiogr. 2007;20:470–6.

    Article  PubMed  Google Scholar 

  132. Raja SG, Dreyfus GD. Basis for intervention on functional tricuspid regurgitation. Semin Thorac Cardiovasc Surg. 2010;22:79–83.

    Article  PubMed  Google Scholar 

  133. Singh SK, Tang GH, Maganti MD, Armstrong S, Williams WG, David TE, Borger MA. Midterm outcomes of tricuspid valve repair versus replacement for organic tricuspid disease. Ann Thorac Surg. 2006;82:1735–41. discussion 1741.

    Article  PubMed  Google Scholar 

  134. Guenther T, Noebauer C, Mazzitelli D, Busch R, Tassani-Prell P, Lange R. Tricuspid valve surgery: a thirty-year assessment of early and late outcome. Eur J Cardiothorac Surg. 2008;34:402–9. discussion 409.

    Article  PubMed  Google Scholar 

  135. Chidambaram M, Abdulali SA, Baliga BG, Ionescu MI. Long-term results of DeVega tricuspid annuloplasty. Ann Thorac Surg. 1987;43:185–8.

    Article  CAS  PubMed  Google Scholar 

  136. Yada I, Tani K, Shimono T, Shikano K, Okabe M, Kusagawa M. Preoperative evaluation and surgical treatment for tricuspid regurgitation associated with acquired valvular heart disease. The Kay-Boyd method vs the Carpentier-Edwards ring method. J Cardiovasc Surg (Torino). 1990;31:771–7.

    CAS  Google Scholar 

  137. Konishi Y, Tatsuta N, Minami K, Matsuda K, Yamazato A, Chiba Y, Nishiwaki N, Shimada I, Nakayama S, Fujita S, et al. Comparative study of Kay-Boyd’s, DeVega’s and Carpentier’s annuloplasty in the management of functional tricuspid regurgitation. Jpn Circ J. 1983;47:1167–72.

    Article  CAS  PubMed  Google Scholar 

  138. Scully HE, Armstrong CS. Tricuspid valve replacement. Fifteen years of experience with mechanical prostheses and bioprostheses. J Thorac Cardiovasc Surg. 1995;109:1035–41.

    Article  CAS  PubMed  Google Scholar 

  139. Kim JB, Jung SH, Choo SJ, Chung CH, Lee JW. Clinical and echocardiographic outcomes after surgery for severe isolated tricuspid regurgitation. J Thorac Cardiovasc Surg. 2013;146:278–84.

    Article  PubMed  Google Scholar 

  140. Kim YJ, Kwon DA, Kim HK, Park JS, Hahn S, Kim KH, Kim KB, Sohn DW, Ahn H, Oh BH, Park YB. Determinants of surgical outcome in patients with isolated tricuspid regurgitation. Circulation. 2009;120:1672–8.

    Article  PubMed  Google Scholar 

  141. Staab ME, Nishimura RA, Dearani JA. Isolated tricuspid valve surgery for severe tricuspid regurgitation following prior left heart valve surgery: analysis of outcome in 34 patients. J Heart Valve Dis. 1999;8:567–74.

    CAS  PubMed  Google Scholar 

  142. RG MA Jr, Friesinger GC, Sinclair-Smith BC. Tricuspid regurgitation following inferior myocardial infarction. Arch Intern Med. 1976;136:95–9.

    Article  Google Scholar 

  143. Silverman BD, Carabajal NR, Chorches MA, Taranto AI. Tricuspid regurgitation and acute myocardial infarction. Arch Intern Med. 1982;142:1394–5.

    Article  CAS  PubMed  Google Scholar 

  144. Cheng JW, Russell H, Stewart RD, Thomas J, Backer CL, Mavroudis C. The role of tricuspid valve surgery in the late management of tetralogy of fallot: collective review. World J Pediatr Congenit Heart Surg. 2012;3:492–8.

    Article  PubMed  Google Scholar 

  145. Schoos MM, Dalsgaard M, Kjaergaard J, Moesby D, Jensen SG, Steffensen I, Iversen KK. Echocardiographic predictors of exercise capacity and mortality in chronic obstructive pulmonary disease. BMC Cardiovasc Disord. 2013;13:84.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Menzel T, Wagner S, Kramm T, Mohr-Kahaly S, Mayer E, Braeuninger S, Meyer J. Pathophysiology of impaired right and left ventricular function in chronic embolic pulmonary hypertension: changes after pulmonary thromboendarterectomy. Chest. 2000;118:897–903.

    Article  CAS  PubMed  Google Scholar 

  147. Badano LP, Muraru D, Enriquez-Sarano M. Assessment of functional tricuspid regurgitation. Eur Heart J. 2013;34:1875–85.

    Article  PubMed  Google Scholar 

Download references

Disclosures

Dr. Hahn is the Principle Investigator SCOUT Trial for which she receives no compensation; she is a speaker for Abbott Vascular, GE Medical and St. Jude Medical.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca T. Hahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hahn, R.T. (2020). Tricuspid Valve Disease. In: Zamorano, J., Lancellotti, P., Pierard, L., Pibarot, P. (eds) Heart Valve Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-23104-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23104-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23103-3

  • Online ISBN: 978-3-030-23104-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics