Skip to main content

Part of the book series: Structural Integrity ((STIN,volume 9))

  • 348 Accesses

Abstract

This chapter contains the results of investigations of the fracture processes (paths of crack propagation) for bodies under the conditions of rolling (rolling with sliding). These results were obtained by using the model proposed in Chap. 2, the solutions of singular integral equations for the corresponding problems, and also the results of evaluation of lifetime under the conditions of contact fatigue. We study and describe the specific features of formation of the typical defects usually observed in rolling bodies, such as pitting, spalling, squat (“dark spot”), checks depending on the operating parameters of the analyzed rolling couple and the characteristics of cyclic crack growth resistance of the corresponding materials. We present examples of evaluation of the residual contact durability of rail, wheel, and roll steels according to the criteria of pitting and spalling formation. The contact fatigue curves (i.e., the dependences of the number Nf of rolling cycles on the maximum value of contact pressure p0) are plotted by using the criteria of pitting or spalling formation on the rolling surfaces. We also give some recommendations useful for the engineering practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    However, for a given direction of motion of the counterbody from the right to the left (Fig. 4.15), the attainment of high pressures (large r) of the lubricant in cracks inclined at small angles β (β ≈ π/6) is unlikely.

References

  1. Akama M, Mori T (2002) Boundary element analysis of surface initiated rolling contact fatigue cracks in wheel/rail contact systems. Wear 253:35–41

    Google Scholar 

  2. Andreikiv AE, Darchuk AI (1992) Ustalostnoye razrusheniye i dolgovechnost’ konstrukciy (Fatigue Fracture and Durability of Structures). Naukova Dumka, Kiev

    Google Scholar 

  3. Beghini M, Bertiny L, Fontanari V (2005) Parametric study of oblique edge cracks under cyclic contact loading. Fatigue Fract Eng Mater Struct 28(1/2):31–40

    Google Scholar 

  4. Beghini M, Bertiny L, Fontanari V (1999) Stress intensity factors for an inclined edge crack in semiplane. Eng Fract Mech 62:607–613

    Article  Google Scholar 

  5. Benuzzi D, Bormetti E, Donzella G (2003) Stress intensity factor range and propagation mode of surface cracks under rolling-sliding contact. Theor Appl Fract Mech 40:55–74

    Article  Google Scholar 

  6. Beynon JH, Brown MW, Kapoor A (1999) Initiation, growth and branching cracks in railway track. In: Beynon JH, Brown MW, Lindley TC et al. (eds) Engineering against fatigue, pp. 461–472, A.A. Balkema Publ., Rotterdam

    Google Scholar 

  7. Bogdanski S (2002) The behaviour of kinked cracks in contact. In: Proceedings of 14th Bienniel conference on Fracture “Fracture mechanics beyond” (ECF 14), Vol. I/III, pp. 289–296, EMAS Publication

    Google Scholar 

  8. Bogdanski S, Olzak M, Stupnicki J (1996) Numerical stress analysis of rail rolling contact fatigue cracks. Wear 191:4–24

    Article  Google Scholar 

  9. Bold PE, Brown MW, Allen RJ (1991) Shear mode crack growth and rolling contact fatigue. Wear 144:307–317

    Article  Google Scholar 

  10. Bower AF (1988) The influence of crack face friction and trapped fluid on surface initiated rolling contact fatigue cracks. J Tribol Trans ASME 110(4):704–711

    Article  Google Scholar 

  11. Cannon DF, Edel KO, Grassie SL, Sawley K (2003) Rail defects: an overview. Fatigue Fract Eng Mater Struct 26(10):865–886

    Article  Google Scholar 

  12. Clayton P, Su X (1996) Surface initiated fatigue of pearlitic and bainitic steels under water lubricated rolling/sliding contact. Wear 200:63–73

    Article  Google Scholar 

  13. Datsishin OP, Marchenko GP (1991) Edge-crack growth. Sov Mater Sci 27(5):465–471

    Article  Google Scholar 

  14. Datsishin OP, Marchenko GP, Panasyuk VV (1993) Theory of crack growth in rolling contact. Mater Sci 29(4):373–383

    Article  Google Scholar 

  15. Datsyshin AP, Panasyuk VV, Savruk MP (1976) General method for the solution of two-dimensional problems of the theory of cracks. In: Abstracts of the 4 Vsesoyuznogo Kongressa po teoreticheskoy i prikladnoy mekhaniki (4th All-Union Congress on Theoretical and Applied Mechanics). Naukova Dumka, Kiev

    Google Scholar 

  16. Datsyshyn OP (1996) Fracture and wear processes simulating under cyclic contact of solid bodies. In: Petit J (ed) ECF-11, vol II. Mechanism and mechanics of damage and failure. EMAS LTD, Warley, pp 1411–1416

    Google Scholar 

  17. Datsyshyn OP (2005) Service life and fracture of solid bodies under the conditions of cyclic contact interaction. Mater Sci 41(6):709–733

    Article  Google Scholar 

  18. Datsyshyn OP, Glazov AYu (2004) Durability prognosis of rolling bodies by pitting development. In: Panasyuk VV (ed) Mekhanika ruynuvannya materialiv ta mitsnist’ konstruktsiy (Fracture Mechanics of Materials and Strength of Structures), pp 243–248, Lviv

    Google Scholar 

  19. Datsyshyn OP, Glazov AYu (2006) Edge cracks paths in rolling bodies under action of linear pressure on the crack faces. In: Kit HS, Kushnir RM (eds) Matematychni problemy mekhaniky neodnoridnykh struktur (Mathematical Problems of Mechanics of Inhomogeneous Structures): Proceedings of the 7th international science conference Vol 2, pp 43–45, Lviv

    Google Scholar 

  20. Datsyshyn OP, Glazov AYu (2009) On some specific features of typical contact-fatigue defects formation in rolling bodies, In: Abstracts of the international Scientific conference “Suchasni problemy mekhaniky” (“Modern Problems of Mechanics”). p 34, Lviv

    Google Scholar 

  21. Datsyshyn OP, Glazov AYu (2013) Rolling bodies durability evaluation by formation of typical contact fatigue damages—pitting and spalling. Visnyk Ternopil’skogo Natsional’nogo Tekhnichnogo Universytetu, No. 3, pp 75–87

    Google Scholar 

  22. Datsyshyn OP, Glazov AYu (2010) Some features of subsurface cracks development in contact zone of wheel steels. Mashynoznavstvo 5:3–8

    Google Scholar 

  23. Datsyshyn OP, Glazov AYu, Khrunyk RA (2005) Prediction mill roller life by pitting development. In: Tezy 7 Mizhnarodnogo sympoziumu ukrayins’kyh inzheneriv-mekhanikiv u Lvovi (Abstracts of the 7th Int. Symposium of Ukrainian Mechanical Engineers in Lviv), pp 116–117, Lviv

    Google Scholar 

  24. Datsyshyn OP, Glazov AYu, Lenkovs’kyi TM (2016) Kinetics of spalling formation in the nearsurface area of railway rail. In: Problemy ta perspektyvy rozvytku zaliznychnogo transportu (Problems and Prospects of Development of Railroad Transport): Abstracts of the 76th international scientific-practical conference, pp 161–163, Dnipropetrovs’k

    Google Scholar 

  25. Datsyshyn OP, Hlazov AYu, Levus AB (2014) Specific features of contact of the faces of an edge crack under moving Hertzian loads. Mater Sci 49(5):589–601

    Article  Google Scholar 

  26. Datsyshyn OP, Kopylets’ MM (2003) Prediction of the service life of rolling bodies according to the development of a subsurface crack. Mater Sci 39(6):765–779

    Article  Google Scholar 

  27. Datsyshyn O, Kuzin M, Glazov A, Kravchuk O (2014) Features of subsurface cracks propagation and spalling formation in rolling bodies, In: Panasyuk VV (ed) Mekhanika ruynuvannya i mitsnist’ konstruktsiy (Fracture Mechanics of Materials and Strength of Structures): Proceedings of the international conference pp 179–186, Lviv

    Google Scholar 

  28. Datsyshyn OP, Levus AB (2003) Propagation of an edge crack under the pressure of liquid in the vicinity of the crack tip. Mater Sci 39(5):754–757

    Article  Google Scholar 

  29. Datsyshyn OP, Levus AB (2009) Some formation features of squat defects in rail steels under rolling contact. In: Panasyuk VV (ed) Mekhanika ruynuvannya i mitsnist’ konstruktsiy (Fracture Mechanics of Materials and Strength of Structures): Proceedings of the 4th international scientific conference, pp. 903–910, Lviv

    Google Scholar 

  30. Datsyshyn OP, Levus AB (2000) Stress intensity factors for a system of edge parallel cracks in a half-plane due to Hertzian pressure on its boundary. Mashynoznavstvo 11:9–15

    Google Scholar 

  31. Datsyshyn OP, Levus AB, Glazov AYu, Marchenko HP (2009) On some development features of pitting, spalling, cracking and dark-spot damages in rail steels under rolling contact. In: Proceedings of the 8th international conference on contact mechanics and wear of rail/wheel systems. Vol 1, pp 325–326, AB Editore, Firenze

    Google Scholar 

  32. Datsyshyn OP, Marchenko HP (2003) Estimation of mode II surface crack growth under rolling contact. Mashynoznavstvo 7:17–23

    Google Scholar 

  33. Datsyshyn OP, Marchenko HP, Glazov AYu (2019) On the special angle of surface cracks propagation in the railway rail heads. Eng Fract Mech 206:452–462

    Article  Google Scholar 

  34. Datsyshyn OP, Marchenko HP, Hlazov AYu, Levus AB (2015) Influence of compressive stresses on the propagation of surface shear cracks in railroad rails. Mater Sci 51(2):235–243

    Article  Google Scholar 

  35. Datsyshyn OP, Marchenko HP, Hlazov AYu, Levus AB (2004) One approach to the evaluation of durability of solid bodies. Mater Sci 40(4):484–490

    Article  Google Scholar 

  36. Datsyshyn OP, Marchenko HP, Levus AB (2001) Investigation of rolling surface cracking under dry friction. In: Franek F, Bartz WJ, Pauschitz A (eds) Papers, Posters and Abstracts from 2nd World Tribology Congress (WTC–2001). On CD (file M-12-P64-603-Datsyshyn.pdf), Vienna (2001)

    Google Scholar 

  37. Datsyshyn OP, Marchenko HP, Levus AB (2001) Edge cracks growth paths during rolling under dry friction. Mashynoznavstvo 4–5, 38–41

    Google Scholar 

  38. Datsyshyn OP, Marchenko HP, Zynyuk OD, Hrytsyshyn PM (1995) Residual durability of the surface layer of ShKh15 bearing steel. Mater Sci 31(2):192–199

    Article  Google Scholar 

  39. Datsyshyn OP, Panasyuk VV (2001) Pitting of the rolling bodies contact surface. Wear 251:1347–1355

    Article  Google Scholar 

  40. Datsyshyn OP, Panasyuk VV, Glazov AYu (2011) Modelling of fatigue contact damages formation in rolling bodies and assesment of their durability. Wear 271(1–2):186–194

    Article  Google Scholar 

  41. Datsyshyn OP, Panasyuk VV, Glazov AYu (2016) The model of the residual lifetime estimation of trybojoint elements by formation criteria of the typical contact fatigue damages. Int J Fatigue 83(2):300–312

    Article  Google Scholar 

  42. Datsyshyn OP, Panasyuk VV, Glazov AYu (2009) The model of fatigue contact damages formation in rolling bodies and estimation of their durability. In: Proceedings of the 8th international conference on contact mechanics and wear of rail/wheel systems. Vol 1, pp 35–43, AB Editore, Firenze

    Google Scholar 

  43. Datsyshyn OP, Panasyuk VV, Pryshlyak RE (2014) Effect of rounding the edges in the base of a rider on the stress intensity factors in a body with edge cracks. Mater Sci 50(1):1–13

    Article  Google Scholar 

  44. Datsyshyn OP, Pryshlyak RYe (2001) Investigation of the rolling surface pitting under boundary lubrication conditions. In: Franek F, Bartz WJ, Pauschitz A (eds) Papers, Posters and Abstracts from 2nd World Tribology Congress (WTC–2001). On CD (file M-12-P65-605-Datsyshyn.pdf), Vienna

    Google Scholar 

  45. Datsyshyn OP, Pryshlyak RE, Prykhods’ka SV, et al (1998) Influence of the shape of model contact load on the stress intensity factors for an edge crack. Problemy Trybologii 3:3–16

    Google Scholar 

  46. Datsyshyn OP, Tkachov VI, Hlazov AYu, Khrunyk RA (2006) Prediction of the contact durability of back-up rolls of forge-rolling mills in the process of development of pitting. Mater Sci 42(6):823–836

    Article  Google Scholar 

  47. Donzella G, Faccoli M, Ghidini A, Mazzu A, Roberti R (2005) The competitive role of wear and RCF in rail steel. Eng Fract Mech 72:287–308

    Article  Google Scholar 

  48. Ekberg A, Kabo E (2005) Fatigue of railway wheels and rail under rolling contact and thermal loading—an overview. Wear 258:1288–1300

    Article  Google Scholar 

  49. Fletcher DI, Beynon JH (1999) A simple method of stress intensity factors calculation for inclined surface-breaking crack with crack face friction under contact loading. Proc Inst Mech Engrs, Part J, J Eng Tribol, 213:481–486

    Article  Google Scholar 

  50. Fletcher DI, Franklin FJ, Kapoor A (2009) Rail surface fatigue and wear. In: Lewis R, Olofsson U (eds) Wheel-rail interface handbook. Woodhead Publishing, pp 280–310

    Google Scholar 

  51. Frolish MF, Fletcher DI, Beynon JH (2002) A quantitative model for predicting the morphology of surface initiated rolling contact fatigue cracks in back-up roll steels. Fatigue Fract Eng Mater Struct 25:1073–1086

    Article  Google Scholar 

  52. Glazov AYu (2007) Evaluation of the residual contact durability of rail steels, In: Proceedings of the open scientific-technical conference of young scientists and specialists of the Karpenko Physicomechanical Institute of the Ukrainian National Academy of Sciences, pp 54–58, Lviv

    Google Scholar 

  53. Glazov AYu (2009) Kinetics of development of subsurface cracks in wheel steels, In: Proceedings of the Conference “Problemy koroziyno-mekhanichnogo ruynuvannya, inzheneriya poverhni, diagnostychni systemy” (“Problems of Corrosion-Mechanical Fracture, Surface Engineering, and Diagnostic Systems”), pp 76–79

    Google Scholar 

  54. Glazov AYu (2003) Residual life of 9KhF roll steel under the conditions of rolling contact fatigue. In: Proceedings of the Open Scientific-Technical Conf. of Young Scientists and Specialists of the Karpenko Physicomechanical Institute of the Ukrainian National Academy of Sciences, pp 142–145, Lviv

    Google Scholar 

  55. Glodež S, Flasker J, Ren Z (1997) A new method for the numerical determination of pitting resistance of gear teeth flanks. Fatigue Fract Eng Mater Struct 20(1):71–83

    Article  Google Scholar 

  56. Godet M, Berthier Y, Dubourg MC, Vincent L (1992) Contact mechanics: needs for broader applications. J Phys D Appl Phys 25:A273–A278

    Article  Google Scholar 

  57. Goshima T (2003) Thermomechanical effects on crack propagation in rolling contact fatigue failure. J Thermal Stresses 26:615–639

    Article  Google Scholar 

  58. Goshima T, Kamishima Y (1996) Mutual interference of two surface cracks in a semi-infinite body due to rolling contact with frictional heating by a rigid roller. JSME Int J Ser A 39(1):26–33

    Google Scholar 

  59. Goshima T, Soda T (1997) Stress intensity factors of a subsurface crack in a semi-infinite body due to rolling/sliding contact and heat generation. JSME Int J, Ser A, 40(3):263–270

    Article  Google Scholar 

  60. Heyer R (2002) The new UIC catalogue of rail defects. Eisenbahningenieur 52(9):94–109

    Google Scholar 

  61. Ishida M, Abe N (1996) Experimental study on rolling contact fatigue from the aspect of residual stress. Wear 191:65–71

    Article  Google Scholar 

  62. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  63. Kaneta M, Matsuda K, Murakami K et al (1995) Reproduction of rail dark-spot defects. Trans JSME C 61:3402–3409

    Article  Google Scholar 

  64. Kaneta M, Matsuda K, Murakami Y, Nishikawa H (1998) A possible mechanism for rail dark spot defects. Trans ASME J Tribol 120:304–309

    Article  Google Scholar 

  65. Kaneta M, Murakami Y (1987) Effects of oil hydraulic pressure on surface crack growth in rolling/sliding contact. Tribology Int 20(4):210–217

    Article  Google Scholar 

  66. Kaneta M, Murakami Y (1991) Propagation of semi-elliptical surface crack in lubricated rolling/sliding elliptical contact. J Trib ASME 113:270–275

    Article  Google Scholar 

  67. Keer LM, Bryant MD (1983) A pitting model for rolling contact fatigue. Trans ASME: J Lubric Technol 105(2):198–205

    Google Scholar 

  68. Keer LM, Bryant MD, Haritos GK (1982) Subsurface and surface cracking due to Hertzian contact. Trans ASME: J Lubric Technol 104(3):347–351

    Google Scholar 

  69. Komvopoulos K, Cho S-S (1997) Finite element analysis of subsurface crack propagation in a half-space due to a moving asperity contact. Wear 209:57–68

    Article  Google Scholar 

  70. Lenkovs’kyi TM (2014) Determination of the characteristics of cyclic crack resistance of steels under transverse shear (a survey). Mater Sci 50(3):340–349

    Article  Google Scholar 

  71. Levus AB (2007) Kinetics of contact of the crack faces in rolling, In: Proceedings of the conference “Problemy koroziyno-mekhanichnogo ruynuvannya, inzheneriya poverhni, diagnostychni systemy” (“Problems of Corrosion-Mechanical Fracture, Surface Engineering, and Diagnostic Systems”), pp 79–82

    Google Scholar 

  72. Levus AB, Datsyshyn OP (2013) System of parallel edge cracks in the contact zone of rolling bodies, Visnyk Ternopil’skogo Natsional’nogo Tekhnichnogo Universytetu 4:42–52

    Google Scholar 

  73. Levus AB, Glazov AYu, Datsyshyn OP (2008) Contact of faces of an edge crack under the action of Hertzian loading. In: Suchasni problemy mekhaniky ta matematyky (Modern Problems of Mechanics and Mathematics): Proceedings of the 2nd International science. conference, Vol 2, pp 56–59, Lviv

    Google Scholar 

  74. Lundberg G, Palmgren A (1947) Dynamic capacity of rolling bearing. Acta Polytechnica, Ser. Mech Eng RSAEE 1(3):50

    Google Scholar 

  75. Mašin A (1985) Přispěvek k porušeni kolejnic kontaktni únavou. Strojirenstvi 35(8):447–451 (1985)

    Google Scholar 

  76. Miller KJ (2001) Structural integrity—whose responsibility?. The 36th John Player Memorial Lecture presented at an Ordinary Meeting of the Institution of Mechanical Engineers, London: Inst. Mech. Engn, 24

    Google Scholar 

  77. Morozov NP, Nikolaev VA, Polukhin VP, Legun AM (1977) Proizvodstvo I ekspluatatsiya krupnykh opornyhkh valkov (Production and Operation of Large Backup Rolls). Metallurgiya, Moscow

    Google Scholar 

  78. Murakami Y (1987) Stress intensity factors handbook. Oxford, UK: Pergamon Press, 1456 p

    Google Scholar 

  79. Murakami Y., Sakae C., Hamada S.: Mechanism of rolling contact fatigue and measurement of \( \Delta \)KIIth for steels. In: Beynon JH, Brown MW, Lindley et al (eds) Engineering against fatigue. A.A. Balkema Publ., Rotterdam, pp 473–485

    Google Scholar 

  80. Mutton PJ, Tan M, Bartle P, Kapoor A (2009) The effect of severe head wear on rolling contact fatigue in heavy haul operations. In: Proceedings of the 8th international conference on contact mechanics and wear of rail/wheel systems, Vol 2, pp 397–407, AB Editore, Firenze

    Google Scholar 

  81. Orringer O, Morris JM, Steele RK (1984) Applied research on rail fatigue and fracture in the United States. Theor Appl Fracture Mech 1:23–49

    Article  Google Scholar 

  82. Ostash OP, Andreiko IM, Kulyk VV, Uzlov IH, Babachenko OI (2007) Fatigue durability of steels of railroad wheels. Mater Sci 43(3):403–414

    Article  Google Scholar 

  83. Otsuka A, Sugawara H, Shomura M (1996) A test method for mode II fatigue crack growth relation to a model for rolling contact fatigue. Fatigue Fract Eng Mater Struct 19(10):1265–1275

    Article  Google Scholar 

  84. Panasyuk VV, Berezhnits’kyi LT (1964) Determination of the limit forces in tension of a plate with an arc-shaped crack. In: Karpenko GV (ed) Voprosy mekhaniki real’nogo tverdogo tela (Problems of Mechanics of Real Solid Body). Naukova Dumka, Kiev, pp 3–19

    Google Scholar 

  85. Panasyuk VV, Datsyshyn OP, Glazov AYu (2007) Prediction of the contact durability of rails by pitting development. Mashynoznavstvo 3:3–10

    Google Scholar 

  86. Panasyuk VV, Datsyshyn OP, Levus AB (2002) Evolution of a system of edge cracks in the region of rolling bodies cyclic contact. In: Neimitz A et al (ed), ECF-14, Fracture mechanics, Beyond 2000, V. I/III, UK: EMAS Publishing, Sheffield, pp 609–616

    Google Scholar 

  87. Panasyuk VV, Datsyshyn OP, Marchenko HP (2001) Crack growth in rolling bodies under the conditions of dry friction and wetting. Mater Sci 37(1):1–11

    Article  Google Scholar 

  88. Panasyuk VV, Datsyshyn OP, Marchenko HP (1995) To crack propagation theory under rolling contact. Eng Fract Mech 52(1):179–191

    Article  Google Scholar 

  89. Panasyuk VV, Ostash OP, Andreiko IM, et al (2012) Norms for steels aimed at preventing in-service defects on the rolling surfaces of whole-rolled high-strength railroad wheels. In: Problyemy resursu i bezpeky ekspluatatsiyi konstruktsiy, sporud ta mashyn (Problems of the Service Life and Operating Safety of Structures, Installations, and Machines), pp 594–598, Kyiv

    Google Scholar 

  90. Panasyuk VV, Ostash OP, Datsyshyn OP, Andreiko IM, et al (2009) Determination of the fatigue durability of railroad wheels made of high-strength steel. In: Problyemy resursu i bezpeky ekspluatatsiyi konstruktsiy, sporud ta mashyn (Problems of the Service Life and Operating Safety of Structures, Installations, and Machines), pp 659–663, Kyiv

    Google Scholar 

  91. Panasyuk VV, Savruk MP, Datsyshyn AP (1976) Raspredeleniye napryazheniy okolo treshchin v plastinakh i obolochkakh (Distribution of Stresses near Cracks in Plates and Shells). Naukova Dumka, Kiev

    Google Scholar 

  92. Pinegin SV (1969) Kontaktnaya prochnost’ i soprotivleniye kacheniyu (Contact Strength and Rolling Resistance). Mashinostroenie, Moscow

    Google Scholar 

  93. Ringsberg JW, Bergkvist A (2003) On propagation of short rolling contact fatigue cracks. Fatigue Fract. Engng Mater. Struct. 26(10):969–983

    Article  Google Scholar 

  94. Romaniv ON, Shur EA, Simin’kovich VN, Tkach AN, Kiseleva TN (1983) Crack resistance of pearlitic eutectoid steels. II: Failure of steels in cyclic loading. Sov Mater Sci 19(2):111–118

    Article  Google Scholar 

  95. Sato M, Anderson PM, Rigney DA (1993) Rolling-sliding behavior of rail steels. Wear 162–164:159–172

    Article  Google Scholar 

  96. Savruk MP (1981) Dvumernyye zadachi uprugosti dlya tel s treshchinsmi (Two-Dimensional Problems of Elasticity for Bodies with Cracks). Naukova Dumka, Kiev

    MATH  Google Scholar 

  97. Smith RA (2003) The wheel-rail interface–some recent accidents. Fatigue Fract Engng Mater Struct 26(10):901–907

    Article  Google Scholar 

  98. Vakulenko IO, Anofriev VH, Hryshchenko MA, Perkov OM (2009) Defekty zaliznychnykh kolis (Defects of Railroad Wheels). Dnipropetrovs’k

    Google Scholar 

  99. Way S (1935) Pitting due to rolling contact. J Appl Mech Trans ASME 2:A49–A58

    Google Scholar 

  100. Yarema SYa, Mikitishin SI (1976) Analytical description of the fatigue-failure diagrams of materials. Sov Mater Sci 11(6):660–666

    Google Scholar 

  101. Zang WL, Gudmundson P (1991) Frictional contact problems of kinked cracks modeled by a boundary integral method. Int J Numer Meth Eng 31:427–446

    Article  MATH  Google Scholar 

  102. Zerbst U, Madler K, Hintze H (2005) Fracture mechanics in railway applications—an overview. Eng Fract Mech 72(2):163–194

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandra Datsyshyn .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Datsyshyn, O., Panasyuk, V. (2020). Rolling Contact Fatigue. In: Structural Integrity Assessment of Engineering Components Under Cyclic Contact. Structural Integrity, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-23069-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23069-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23068-5

  • Online ISBN: 978-3-030-23069-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics