Skip to main content

Singular Integral Equations for Some Contact Problems of Elasticity Theory for Bodies with Cracks

  • Chapter
  • First Online:
Structural Integrity Assessment of Engineering Components Under Cyclic Contact

Part of the book series: Structural Integrity ((STIN,volume 9))

Abstract

This chapter is devoted to the mathematical method of modeling of the deformation and fracture process for elements of moving and fixed joints (tribojoints). In this chapter, we deduce singular integral equations of some contact problems of the elasticity theory for bodies with cracks. The Kolosov-Muskhelishvili complex potentials for the analyzed problems are represented in the form of integral representations with Cauchy-type kernels with respect to the derivatives of the discontinuities of displacements on the crack contours. In the general case, the problems are reduced to systems of singular integral equations of the first kind. We propose singular integral equations (SIE) for the elastic half-plane weakened by a system of curvilinear cracks under the action of various model contact loads applied to the boundary of the half-plane. We briefly describe the Gauss-Chebyshev method of mechanical quadratures that enables one to efficiently construct the numerical solutions of these SIE. We also deduce the relations for the stress intensity factors at the crack tips can be expressed via the solutions of SIE for inside and edge curvilinear cracks in the half-plane. In this chapter, we present both known results available from the literature and new results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aleksandrov VM, Romalis BL (1986) Kontaktnyye zadachi v mashinostroyenii (Contact Problems in Mechanical Engineering). Mashinostroenie, Moscow

    Google Scholar 

  2. Bateman H, Erdelyi A (1953) higher transcendental functions, vol 2. McGraw-Hill, New York

    MATH  Google Scholar 

  3. Bower AF (1988) The influence of crack face friction and trapped fluid on surface initiated rolling contact fatigue cracks. J Tribol Trans ASME 110(4):704–711

    Article  Google Scholar 

  4. Chawla MM, Ramakrishan TR (1974) Modified Gauss-Jacoby quadrature formulas for the numerical evaluation of Cauchy type singular integrals. BIT (Sver) 14(1):14–21

    Article  Google Scholar 

  5. Cherepanov GP (1974) Mekhanika khrupkogo razrusheniya (Mechanics of Brittle Fracture). Nauka, Moscow

    Google Scholar 

  6. Datsishin OP, Marchenko GP, Panasyuk VV (1993) Theory of crack growth in rolling contact. Mater Sci 29(4):373–383

    Article  Google Scholar 

  7. Datsyshin AP, Marchenko HP (1985) An edge curvilinear crack in an elastic half plane. Sov Mater Sci 21(1):66–70

    Article  Google Scholar 

  8. Datsyshin AP, Marchenko HP (1985) Interaction of curvilinear cracks with the boundary of an elastic half plane. Sov Mater Sci 20(5):466–473

    Article  Google Scholar 

  9. Datsyshin AP, Panasyuk VV, Savruk MP (1976) General method for the solution of two-dimensional problems of the theory of cracks. In: Abstracts of the 4 Vsesoyuznogo Kongressa po teoreticheskoy i prikladnoy mekhaniki (4th All-Union Congress on Theoretical and Applied Mechanics). Naukova Dumka, Kiev

    Google Scholar 

  10. Datsyshin AP, Savruk MP (1973) A system of arbitrarily oriented cracks in elastic solids. J Appl Math Mech 37(2):306–313

    Article  MATH  Google Scholar 

  11. Datsyshin AP, Savruk MP (1974) Integral equations of the plane problem of crack theory. J Appl Math Mech 38(4):677–686

    Article  MATH  Google Scholar 

  12. Datsyshyn OP, Marchenko HP (2002) Calculation of the rolling surface durability at the stage of shear mode growth of edge cracks. In: Troshchenko VT (ed) “Trybofatyka” (“Tribofatigue”), Proceedings of the 4th International Symposium on Tribofatigue (ISTF 4), Vol 1. Ternopil’, pp 420–425

    Google Scholar 

  13. Datsyshyn OP, Marchenko HP (2003) Estimation of mode II surface crack growth under rolling contact. Mashynoznavstvo 7:17–23

    Google Scholar 

  14. Datsyshyn OP, Marchenko HP (2008) Stressed state of a half plane with shallow edge crack under Hertzian loading (a survey). Mater Sci 44(1):22–34

    Article  Google Scholar 

  15. Datsyshyn OP, Panasyuk VV (2017) Methods for the evaluation of the contact durability of elements of tribojoints (a survey). Mater Sci 52(4):447–459

    Article  Google Scholar 

  16. Datsyshyn OP, Pryshlyak RE, Prykhods’ka SV, et al Influence of the shape of model contact load on the stress intensity factors for an edge crack. Probl Trybol 3:3–16

    Google Scholar 

  17. Datsyshyn OP, Shchur RB (1998) Development of edge cracks under conditions of fretting fatigue. Probl Tribol 2:7–16

    Google Scholar 

  18. Dawson PH (1967) Contact fatigue in soft steel with random loading. J Mech Engn Sci 9(1):79–80

    Article  Google Scholar 

  19. Dubourg MC, Villechaise B (1992) Stress intensity factors in a bent crack: a model. Eur J Mech A/Solids 11(2):169–179

    Google Scholar 

  20. Erdogan F, Gupta GD (1972) On the numerical solution of singular integral equations. Q Appl Math 29(4):525–534

    Article  MathSciNet  MATH  Google Scholar 

  21. Frolish MF, Fletcher DI, Beynon JH (2002) A quantitative model for predicting the morphology of surface initiated rolling contact fatigue cracks in back-up roll steels. Fatigue Fract Eng Mater Struct 25:1073–1086

    Article  Google Scholar 

  22. Gakhov FD (1963) Krayevyye zadachi (Boundary-Value Problems). Fizmatgiz, Moscow

    Google Scholar 

  23. Hills DA, Comninou M (1985) An analysis of fretting fatigue crack during loading phase. Int J Solids Struct 21(7):721–730

    Article  MATH  Google Scholar 

  24. Hills DA, Nowell D (1994) Mechanics of fretting fatigue. Dordrecht: Kluwer Academic Publishers, 236 p

    Google Scholar 

  25. Isida M (1979) Tension of a half plane containing array cracks, branched cracks, and cracks emanating from sharp notches. Trans Jpn. Soc Mech Eng A45(392):306–314

    Google Scholar 

  26. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  27. Kachanov LM (1974) Osnovy mekhaniki razrusheniya (Fundamentals of Fracture Mechanics). Nauka, Moscow

    Google Scholar 

  28. Kalandiya AI (1973) Matematicheskiye metody dvumernoy uprugosti (Mathematical Methods of Two-Dimensional Elasticity). Nauka, Moscow

    Google Scholar 

  29. Keer LM, Bryant MD, Haritos GK (1982) Subsurface and surface cracking due to Hertzian contact. Trans ASME J Lubric Technol 104(3):347–351

    Article  Google Scholar 

  30. Kolesnikov YuV, Morozov EM (1989) Mekhanika kontaktnogo razrusheniya (Mechanics of Contact Fracture). Nauka, Moscow

    Google Scholar 

  31. Kolosov GV (1935) Primeneniye kompleksnoy peremennoy k teorii uprugosti (Application of Complex Variable to the Theory of Elasticity). ONTI Moscow-Leningrad

    Google Scholar 

  32. Komvopoulos K (1996) Subsurface crack mechanisms under indentation loading. Wear 199:9–23

    Article  Google Scholar 

  33. Komvopoulos K, Cho S-S (1997) Finite element analysis of subsurface crack propagation in a half-space due to a moving asperity contact. Wear 209:57–68

    Article  Google Scholar 

  34. Korneichuk AA (1964) Quadrature formulas for singular integrals. In: Chislennyye metody resheniya differentsial`nykh i integral`nykh uravneniy i kvadraturnyye formuly (Numerical Methods for the Solution of Differential and Integral Equations and Quadrature Formulas). Nauka, Moscow, pp 64–74

    Google Scholar 

  35. Lin’kov AM (1976) Problems of the theory of elasticity for a plane with a finitely many curvilinear cuts. Issled Uprug Plast 11:3–11

    Google Scholar 

  36. Muskhelishvili NI (1962) Singulyarnyye integral`nyye uravneniya (Singular Integral Equations). Fizmatgiz, Moscow

    Google Scholar 

  37. Muskhelishvili NI (1966) Nekotoryye osnovnyye zadachi matematicheskoy teorii uprugosti (Some Basic Problems of the Mathematical Theory of Elasticity). Nauka, Moscow

    Google Scholar 

  38. Natanson IP (1949) Konstruktsionnaya teoriya funktsiy (Constructive Theory of Functions). Gostekhizdat, Moscow-Leningrad

    Google Scholar 

  39. Panasyuk VV (1968) Predel`noye ravnovesiye khrupkikh tel s treshchinami (Limit Equilibrium of Brittle Bodies with Cracks). Naukova Dumka, Kiev

    Google Scholar 

  40. Panasyuk VV, Berezhnits’kyi LT (1964) Determination of the limit forces in tension of a plate with an arc-shaped crack. In: Karpenko GV (ed) Voprosy mekhaniki real`nogo tverdogo tela (Problems of Mechanics of Real Solid Body). Naukova Dumka, Kiev, pp 3–19

    Google Scholar 

  41. Panasyuk VV, Datsyshin AP (1974) The equilibrium limit of a half plane with an arbitrarily oriented crack at its boundary. Sov Mater Sci 7(6):751–752

    Article  Google Scholar 

  42. Panasyuk VV, Datsyshyn OP, Marchenko HP (1995) To crack propagation theory under rolling contact. Eng Fract Mech 52(1):179–191

    Article  Google Scholar 

  43. Panasyuk VV, Savruk MP, Datsyshin AP (1977) Application of singular integral equations to the solution of two-dimensional problems in crack theory. Sov Mater Sci 12(3):245–259

    Article  Google Scholar 

  44. Panasyuk VV, Savruk MP, Datsyshin AP (1976) Raspredeleniye napryazheniy okolo treshchin v plastinakh i obolochkakh (Distribution of Stresses near Cracks in Plates and Shells). Naukova Dumka, Kiev

    Google Scholar 

  45. Panasyuk VV, Savruk MP, Datsyshyn AP (1977) A general method of solution of two-dimensional problems in the theory of cracks. Eng Fract Mech 9(2):481–497

    Article  Google Scholar 

  46. Parton VZ, Morozov EM (1974) Mekhanika uprugo-plasticheskogo razrusheniya (Mechanics of Elastoplastic Fracture). Nauka, Moscow

    Google Scholar 

  47. Pinegin SV (1969) Kontaktnaya prochnost` i soprotivleniye kacheniyu (Contact Strength and Rolling Resistance). Mashinostroenie, Moscow

    Google Scholar 

  48. Rooke DP, Jones DA (1979) Stress intensity factors in fretting fatigue. J Strain Anal 14(1):1–6

    Article  Google Scholar 

  49. Savruk MP (1977) Constructing integral equations for two-dimensional elasticity theory problems of a body with curvilinear cracks. Sov Mater Sci 12(6):682–683

    Article  Google Scholar 

  50. Savruk MP (1980) Stress intensity factors for a curvilinear crack differing little from arc shaped or straight. Sov Mater Sci 16(2):156–161

    Article  Google Scholar 

  51. Savruk MP (1988) Koefficienty intensivnosti napryazheniy v telakh s treshchinami (Stress Intensity Factors in Bodies with Cracks). In: Panasyuk VV (ed) Fracture mechanics and strength of materials: a handbook, vol 2. Naukova Dumka, Kiev

    Google Scholar 

  52. Savruk MP (1978) System of curvilinear cracks in an elastic body under different boundary conditions on their lips. Sov Mater Sci 14(6):641–649

    Article  Google Scholar 

  53. Savruk MP (1981) Dvumernyye zadachi uprugosti dlya tel s treshchinsmi (Two-Dimensional Problems of Elasticity for Bodies with Cracks). Naukova Dumka, Kiev

    MATH  Google Scholar 

  54. Savruk MP, Datsyshin AP (1974) Interaction between a system of cracks and the boundaries of an elastic body. Sov Appl Mech 10(7):755–761

    Article  MATH  Google Scholar 

  55. Savruk MP, Datsyshin AP (1972) Limiting equilibrium state of a body weakened by a system of randomly oriented cracks. In: Termomekhanicheskiye metody razrusheniya gornykh porod (Thermomechanical Methods of Fracture of Rocks), Part 2. Naukova Dumka, Kiev, pp 97–102

    Google Scholar 

  56. Sheppard SD, Hills DA, Barber JR (1986) An analysis of fretting cracks. Part 2: Unloading and reloading phases. Int J Solids Struct 22(4):387–396

    Google Scholar 

  57. Sih GC, Liebowitz H (1968) Mathematical theory of brittle fracture. In: Liebowitz H (ed) Fracture, vol 2. Academic Press, New York-London, pp 68–191

    MATH  Google Scholar 

  58. Sih GC, Paris PC, Erdogan F (1962) Crack-tip stress-intensity factors for plane extension and plate bending problems. Trans ASME J Appl Mech 29:306–312

    Article  Google Scholar 

  59. Sosnovskii LA, Makhutov NA, Shurinov VA (1992) Friction-mechanical fatigue: basic regularities, Zavodskaya Laboratoriya 9:46–63

    Google Scholar 

  60. Theocaris PS, Ioakimidis NI (1979) A method of numerical solution of Chauchy-type singular integral equations with generalized kernels and arbitrary complex singularities. J Comput Phys 30(3):309–323

    Article  MathSciNet  MATH  Google Scholar 

  61. Turchak LI (1987) Osnovy chisel`nykh metodov (Fundamentals of Numerical Methods): A Tutorial. Nauka, Moscow

    Google Scholar 

  62. Vladimirov VI (1976) Obobshchennyye funktsii v matematicheskoy fizike (Generalized Functions in Mathematical Physics). Nauka, Moscow

    Google Scholar 

  63. Waterhause RB (1972) Fretting corrosion. Pergamon Press, Oxford-New York

    Google Scholar 

  64. Weighardt R (1907) Über das Spalten und Zerreißen elastischer Körper. Z. Math. und Phys. 55(1/2):60–103

    Google Scholar 

  65. Williams ML (1957) On the stress distribution at the base of a stationary crack. J. Appl. Mech. 24(1):109–114

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandra Datsyshyn .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Datsyshyn, O., Panasyuk, V. (2020). Singular Integral Equations for Some Contact Problems of Elasticity Theory for Bodies with Cracks. In: Structural Integrity Assessment of Engineering Components Under Cyclic Contact. Structural Integrity, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-23069-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23069-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23068-5

  • Online ISBN: 978-3-030-23069-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics