Skip to main content

Oxidative Stress in Entomopathogenic Fungi and Its Potential Role on Mycoinsecticide Enhancement

  • Chapter
  • First Online:
Book cover Microbes for Sustainable Insect Pest Management

Abstract

Entomopathogenic fungi (EF) are used worldwide as environmentally friendly mycoinsecticides. A successful invasion process depends on the fungal ability to cope with several stress factors, such as osmotic stress, temperature, UV radiation, and oxidative stress. Reactive oxygen species (ROS) can appear due to either previous environmental stresses or endogenous metabolic changes. Moreover, ROS may be either part of the host defense against fungi or the fungus itself can release ROS in the hemolymph to overcome insect defenses. Regardless of its source, fungi must mitigate ROS damage in their cells. Antioxidant response in fungi involves the action of enzymes as well as non-enzymatic compounds. Oxidative stress and antioxidant responses are known to have several direct and/or indirect consequences in fungal adaptation. Nutritive stress produced by non-preferred carbohydrate sources in conidia production can increase ROS scavengers consequently enhancing UV tolerance. Additionally, growth in long chain cuticular hydrocarbons triggers ROS production and antioxidant gene induction, leading to more virulent conidia. Also, ROS can act as signaling molecules for cell differentiation into new propagules such as microsclerotia and mycelial pellets that tolerate desiccation and produce new infective conidia in the field. In this chapter we will summarize ROS sources and antioxidant scavengers during conidial production and fungal invasion into their hosts, and the beneficial consequences for stress tolerance, virulence and cell differentiation that can arise from these initial drawbacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali, S., Huang, Z., Li, H., Bashir, M. H., & Ren, S. (2013). Antioxidant enzyme influences germination, stress tolerance, and virulence of Isaria fumosorosea. Journal of Basic Microbiology, 53, 489–497.

    Article  CAS  Google Scholar 

  • Barbarin, A. M., Bellicanta, G. S., Osborne, J. A., Schal, C., & Jenkins, N. E. (2017). Susceptibility of insecticide-resistant bed bugs (Cimex lectularius) to infection by fungal biopesticide. Pest Management Science, 73, 1568–1573.

    Article  CAS  Google Scholar 

  • Blanford, S. (2005). Fungal pathogen reduces potential for malaria transmission. Science, 308, 1638–1641.

    Article  CAS  Google Scholar 

  • Chantasingh, D., Kitikhun, S., Keyhani, N. O., Boonyapakron, K., Thoetkiattikul, H., Pootanakit, K., & Eurwilaichitr, L. (2013). Identification of catalase as an early up-regulated gene in Beauveria bassiana and its role in entomopathogenic fungal virulence. Biological Control, 67, 85–93.

    Article  CAS  Google Scholar 

  • Crespo, R., Juarez, M. P., & Cafferata, L. F. R. (2000). Biochemical interaction between entomopathogenous fungi and their insect-host-like hydrocarbons. Mycologia, 92, 528–536.

    Article  CAS  Google Scholar 

  • Crespo, R., Juárez, M. P., Dal Bello, G. M., Padín, S., Calderón-Fernández, G. M., & Pedrini, N. (2002). Increased mortality of Acanthoscelides obtectus by alkane-grown Beauveria bassiana. BioControl, 47, 685–696.

    Article  CAS  Google Scholar 

  • Deshayes, C., Siegwart, M., Pauron, D., Froger, J.-A., Lapied, B., & Apaire-Marchais, V. (2017). Microbial pest control agents: Are they a specific and safe tool for insect pest management? Current Medicinal Chemistry, 24, 2959–2973.

    Article  CAS  Google Scholar 

  • Fang, W., & St. Leger, R. J. (2012). Enhanced UV resistance and improved killing of malaria mosquitoes by photolyase transgenic entomopathogenic fungi. PLoS One, 7, 2–8.

    Google Scholar 

  • Fang, W., Fernandes, É. K. K., Roberts, D. W., Bidochka, M. J., & St. Leger, R. J. (2010). A laccase exclusively expressed by Metarhizium anisopliae during isotropic growth is involved in pigmentation, tolerance to abiotic stresses and virulence. Fungal Genetics and Biology, 47, 602–607.

    Article  CAS  Google Scholar 

  • Faria, M. R., & Wraight, S. P. (2007). Mycoinsecticides and Mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 43, 237–256.

    Article  Google Scholar 

  • Georgiou, C. D., Patsoukis, N., Papapostolou, I., & Zervoudakis, G. (2006). Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress. Integrative and Comparative Biology, 46, 691–712.

    Article  CAS  Google Scholar 

  • Gessler, N. N., Aver’yanov, A. A., & Belozerskaya, T. A. (2007). Reactive oxygen species in regulation of fungal development. Biochemistry (Moscow), 72, 1091–1109.

    Article  CAS  Google Scholar 

  • Griffiths, H. R., Mistry, P., Herbert, K. E., & Lunec, J. (1998). Molecular and cellular effects of ultraviolet light-induced genotoxicity. Critical Reviews in Clinical Laboratory Sciences, 35, 189–237.

    Article  CAS  Google Scholar 

  • Hallsworth, J. E. (2018). Stress-free microbes lack vitality. Fungal Biology, 122, 379–385.

    Article  CAS  Google Scholar 

  • Hansberg, W., & Aguirre, J. (1990). Hyperoxidant states cause microbial cell differentiation by cell isolation from dioxygen. Journal of Theoretical Biology, 142, 201–221.

    Article  CAS  Google Scholar 

  • Hernandez, C. E. M., Guerrero, I. E. P., Hernandez, G. A. G., Solis, E. S., & Guzman, J. C. T. (2010). Catalase over expression reduces the germination time and increases the pathogenicity of the fungus Metarhizium anisopliae. Applied Microbiology and Biotechnology, 87, 1033–1044.

    Article  Google Scholar 

  • Huarte-Bonnet, C., Juárez, M. P., & Pedrini, N. (2015). Oxidative stress in entomopathogenic fungi grown on insect-like hydrocarbons. Current Genetics, 61, 289–297.

    Article  CAS  Google Scholar 

  • Huarte-Bonnet, C., Paixão, F. R. S., Ponce, J. C., Santana, M., Prieto, E. D., & Pedrini, N. (2018). Alkane-grown Beauveria bassiana produce mycelial pellets displaying peroxisome proliferation, oxidative stress, and cell surface alterations. Fungal Biology, 122, 457–464.

    Article  CAS  Google Scholar 

  • Jackson, M. A., & Jaronski, S. T. (2012). Development of pilot-scale fermentation and stabilisation processes for the production of microsclerotia of the entomopathogenic fungus Metarhizium brunneum strain F52. Biocontrol Science and Technology, 22, 915–930.

    Article  Google Scholar 

  • Jackson, M. A., Dunlap, C. A., & Jaronski, S. T. (2010). Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. BioControl, 55, 129–145.

    Article  Google Scholar 

  • Jaronski, S. T., & Jackson, M. A. (2008). Efficacy of Metarhizium anisopliae microsclerotial granules. Biocontrol Science and Technology, 18, 849–863.

    Article  Google Scholar 

  • Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., & Goettel, M. S. (2015). Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology, 132, 1–41.

    Article  CAS  Google Scholar 

  • Li, F., Shi, H. Q., Ying, S. H., & Feng, M. G. (2015). Distinct contributions of one Fe- and two Cu/Zn-cofactored superoxide dismutases to antioxidation, UV tolerance and virulence of Beauveria bassiana. Fungal Genetics and Biology, 81, 160–171.

    Article  CAS  Google Scholar 

  • Liu, J., Yin, Y., Song, Z., Li, Y., Jiang, S., Shao, C., & Wang, Z. (2014). NADH: Flavin oxidoreductase/NADH oxidase and ROS regulate microsclerotium development in Nomuraea rileyi. World Journal of Microbiology and Biotechnology, 30, 1927–1935.

    Article  CAS  Google Scholar 

  • Lovett, B., & St. Leger, R. J. (2014). Stress is the rule rather than the exception for Metarhizium. Current Genetics, 61, 253–261.

    Article  Google Scholar 

  • Maniania, N. K., & Ekesi, S. (2013). The use of entomopathogenic fungi in the control of tsetse flies. Journal of Invertebrate Pathology, 112, 83–88.

    Article  Google Scholar 

  • Mascarin, G. M., Kobori, N. N., de Jesus Vital, R. C., Jackson, M. A., & Quintela, E. D. (2014). Production of microsclerotia by Brazilian strains of Metarhizium spp. using submerged liquid culture fermentation. World Journal of Microbiology and Biotechnology, 30, 1583–1590.

    Article  CAS  Google Scholar 

  • Miranda-Hernández, F., Saucedo-Castañeda, G., Alatorre-Rosas, R., & Loera, O. (2014). Oxygen-rich culture conditions enhance the conidial infectivity and the quality of two strains of Isaria fumosorosea for potentially improved biocontrol processes. Pest Management Science, 70, 661–666.

    Article  Google Scholar 

  • Napolitano, R., & Juárez, M. P. (1997). Entomopathogenous fungi degrade epicuticular hydrocarbons of Triatoma infestans. Archives of Biochemistry and Biophysics, 344, 208–214.

    Article  CAS  Google Scholar 

  • Ortiz-Urquiza, A., & Keyhani, N. O. (2015). Stress response signaling and virulence: Insights from entomopathogenic fungi. Current Genetics, 61, 239–249.

    Article  CAS  Google Scholar 

  • Papapostolou, I., & Georgiou, C. D. (2010a). Superoxide radical is involved in the sclerotial differentiation of filamentous phytopathogenic fungi: Identification of a fungal xanthine oxidase. Fungal Biology, 114, 387–395.

    Article  CAS  Google Scholar 

  • Papapostolou, I., & Georgiou, C. D. (2010b). Hydrogen peroxide is involved in the sclerotial differentiation of filamentous phytopathogenic fungi. Journal of Applied Microbiology, 109, 1929–1936.

    Article  CAS  Google Scholar 

  • Pedrini, N. (2018). Molecular interactions between entomopathogenic fungi (Hypocreales) and their insect host: Perspectives from stressful cuticle and hemolymph battlefields and the potential of dual RNA sequencing for future studies. Fungal Biology, 122, 538–545.

    Article  CAS  Google Scholar 

  • Pedrini, N., Crespo, R., & Juárez, M. P. (2007). Biochemistry of insect epicuticle degradation by entomopathogenic fungi. Comparative Biochemistry and Physiology: Toxicology & Pharmacology, 146, 124–137.

    Google Scholar 

  • Pedrini, N., Mijailovsky, S. J., Girotti, J. R., Stariolo, R., Cardozo, R. M., Gentile, A., & Juárez, M. P. (2009). Control of pyrethroid-resistant chagas disease vectors with entomopathogenic fungi. PLoS Neglected Tropical Diseases, 3(5), e434.

    Article  Google Scholar 

  • Rangel, D. E. N., Anderson, A. J., & Roberts, D. W. (2006). Growth of Metarhizium anisopliae on non-preferred carbon sources yields conidia with increased UV-B tolerance. Journal of Invertebrate Pathology, 93, 127–134.

    Article  CAS  Google Scholar 

  • Rangel, D. E. N., Alston, D. G., & Roberts, D. W. (2008). Effects of physical and nutritional stress conditions during mycelial growth on conidial germination speed, adhesion to host cuticle, and virulence of Metarhizium anisopliae, an entomopathogenic fungus. Mycological Research, 112, 1355–1361.

    Article  Google Scholar 

  • Rangel, D. E. N., Fernandes, É. K. K., Braga, G. U. L., & Roberts, D. W. (2011). Visible light during mycelial growth and conidiation of Metarhizium robertsii produces conidia with increased stress tolerance. FEMS Microbiology Letters, 315, 81–86.

    Article  CAS  Google Scholar 

  • Rangel, D. E. N., Braga, G. U. L., Fernandes, É. K. K., Keyser, C. A., Hallsworth, J. E., & Roberts, D. W. (2015). Stress tolerance and virulence of insect-pathogenic fungi are determined by environmental conditions during conidial formation. Current Genetics, 61, 383–404.

    Article  CAS  Google Scholar 

  • Rúa, J., de Castro, C., de Arriaga, D., García-Armesto, M. R., Busto, F., & Del Valle, P. (2014). Stress in Phycomyces blakesleeanus by glucose starvation and acetate growth: Response of the antioxidant system and reserve carbohydrates. Microbiological Research, 169, 788–793.

    Article  Google Scholar 

  • Scholte, E.-J., Knols, B. G. J., & Takken, W. (2006). Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity. Journal of Invertebrate Pathology, 91, 43–49.

    Article  Google Scholar 

  • Sideri, M., & Georgiou, C. D. (2000). Differentiation and hydrogen peroxide production in Sclerotium rolfsii are induced by the oxidizing growth factors, light and iron. Mycologia, 92, 1033–1042.

    Article  CAS  Google Scholar 

  • Song, Z., Yin, Y., Jiang, S., Liu, J., Chen, H., & Wang, Z. (2013). Comparative transcriptome analysis of microsclerotia development in Nomuraea rileyi. BMC Genomics, 14, 411.

    Article  CAS  Google Scholar 

  • Song, Z., Yin, Y., Jiang, S., Liu, J., & Wang, Z. (2014). Optimization of culture medium for microsclerotia production by Nomuraea rileyi and analysis of their viability for use as a mycoinsecticide. BioControl, 59, 597–605.

    Article  CAS  Google Scholar 

  • Villamizar, L. F., Nelson, T. L., Jones, S. A., Jackson, T. A., Hurst, M. R. H., & Marshall, S. D. G. (2018). Formation of microsclerotia in three species of Beauveria and storage stability of a prototype granular formulation. Biocontrol Science and Technology, 28, 1097–1113.

    Article  Google Scholar 

  • Wang, Z. L., Zhang, L. B., Ying, S. H., & Feng, M. G. (2013a). Catalases play differentiated roles in the adaptation of a fungal entomopathogen to environmental stresses. Environmental Microbiology, 15, 409–418.

    Article  CAS  Google Scholar 

  • Wang, H., Lei, Z., Reitz, S., Li, Y., & Xu, X. (2013b). Production of microsclerotia of the fungal entomopathogen Lecanicillium lecanii (Hypocreales: Cordycipitaceae) as a biological control agent against soil-dwelling stages of Frankliniella occidentalis (Thysanoptera: Thripidae). Biocontrol Science and Technology, 23, 234–238.

    Article  Google Scholar 

  • Xie, X. Q., Ying, S. H., & Feng, M. G. (2010). Characterization of a new Cu/Zn-superoxide dismutase from Beauveria bassiana and two site-directed mutations crucial to its antioxidation activity without chaperon. Enzyme and Microbial Technology, 46, 217–222.

    Article  CAS  Google Scholar 

  • Xie, X. Q., Li, F., Ying, S. H., & Feng, M. G. (2012). Additive contributions of two manganese-cored superoxide dismutases (MnSODs) to antioxidation, UV tolerance and virulence of Beauveria bassiana. PLoS One, 7(1), e30298.

    Article  CAS  Google Scholar 

  • Zhang, L. B., & Feng, M. G. (2018). Antioxidant enzymes and their contributions to biological control potential of fungal insect pathogens. Applied Microbiology and Biotechnology, 102, 4995–5004.

    Article  CAS  Google Scholar 

  • Zhang, L. B., Tang, L., Ying, S. H., & Feng, M. G. (2015). Subcellular localization of six thioredoxins and their antioxidant activity and contributions to biological control potential in Beauveria bassiana. Fungal Genetics and Biology, 76, 1–9.

    Article  CAS  Google Scholar 

  • Zhang, L. B., Tang, L., Ying, S. H., & Feng, M. G. (2016). Regulative roles of glutathione reductase and four glutaredoxins in glutathione redox, antioxidant activity, and iron homeostasis of Beauveria bassiana. Applied Microbiology and Biotechnology, 100, 5907–5917.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolás Pedrini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huarte-Bonnet, C., Mannino, M.C., Pedrini, N. (2019). Oxidative Stress in Entomopathogenic Fungi and Its Potential Role on Mycoinsecticide Enhancement. In: Khan, M., Ahmad, W. (eds) Microbes for Sustainable Insect Pest Management . Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-23045-6_7

Download citation

Publish with us

Policies and ethics