Skip to main content

Thermotolerance of Fungal Conidia

  • Chapter
  • First Online:
Microbes for Sustainable Insect Pest Management

Abstract

Conidia of entomopathogenic fungi (EF) are the propagules most frequently used in arthropod biocontrol programs. This anamorphic form is essential for the infection process, including spore germination, penetration, vegetative growth, conidiogenesis and dissemination. Most EF are mesophilic and can develop between 10 and 40 °C, but optimal growth is between 25 and 35 °C. Abiotic factors, especially temperature (high or low) can determine their viability, virulence and success or failure of infection process. Temperature has the highest impact on conidial stress inhibiting metabolic processes, such as decreased morphogenesis during germination, protein denaturation and membrane disorganization. Several studies show that some strains of Beauveria spp., Metarhizium spp., and Isaria spp. exhibit conidial survival even when grown at high temperatures, indicating a relationship between conidial thermotolerance and their geographical isolation origin. Moreover, the high variability in fungal thermotolerance is also dependent of the culture media composition and growth condition. EF that grow at high temperatures do not grow at low temperatures and vice versa. Moreover, when growth conditions are not set at optimal temperatures, EF development is affected and their effectiveness in biological control programs of arthropods is reduced. Thermal stress directly impacts on fungal strains ability to target arthropods and their environmental activity performance. The screening for fungal strains with a higher thermotolerance and the improvement on conidial formulations may aid in optimizing the conditions for biocontrol agent application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves, R. T., Bateman, R. P., Prior, C., & Leather, S. R. (1998). Effects of simulated solar radiation on conidial germination of Metarhizium anisopliae in different formulations. Crop Protection, 17, 675–679.

    Article  CAS  Google Scholar 

  • Alves, F. M., Bernardo, C. C., Paixão, F. R., Barreto, L. P., Luz, C., Humber, R. A., & Fernandes, É. K. (2017). Heat-stressed Metarhizium anisopliae: Viability (in vitro) and virulence (in vivo) assessments against the tick Rhipicephalus sanguineus. Parasitology Research, 116, 111–121.

    Article  PubMed  Google Scholar 

  • Anderson, J. G., & Smith, J. E. (1972). The effects of elevated temperatures on spore swelling and germination in Aspergillus niger. Canadian Journal of Microbiology, 18, 289–297.

    Article  CAS  PubMed  Google Scholar 

  • Bai, Z., Harvey, L. M., & McNeil, B. (2003). Elevated temperature effects on the oxidant/antioxidant balance in submerged batch cultures of the filamentous fungus Aspergillus niger B1-D. Biotechnology and Bioengineering, 83, 772–779.

    Article  CAS  PubMed  Google Scholar 

  • Barreto, L. P., Luz, C., Mascarin, G. M., Roberts, D. W., Arruda, W., & Fernandes, É. K. (2016). Effect of heat stress and oil formulation on conidial germination of Metarhizium anisopliae ss on tick cuticle and artificial medium. Journal of Invertebrate Pathology, 138, 94–103.

    Article  PubMed  Google Scholar 

  • Bidochka, M. J., Kamp, A. M., Lavender, T. M., Dekoning, J., & De Croos, J. N. (2001). Habitat association in two genetic groups of the insect-pathogenic fungus Metarhizium anisopliae: Uncovering cryptic species? Applied and Environmental Microbiology, 67, 1335–1342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borisade, O. A., & Magan, N. (2014). Growth and sporulation of entomopathogenic Beauveria bassiana, Metarhizium anisopliae, Isaria farinosa and Isaria fumosorosea strains in relation to water activity and temperature interactions. Biocontrol Science and Technology, 24, 999–1011.

    Article  Google Scholar 

  • Bosch, A., & Yantorno, O. (1999). Microcycle conidiation in the entomopathogenic fungus Beauveria bassiana bals. (vuill.). Process Biochemistry, 34, 707–716.

    Article  CAS  Google Scholar 

  • Bouamama, N., Vidal, C., & Fargues, J. (2010). Effects of fluctuating moisture and temperature regimes on the persistence of quiescent conidia of Isaria fumosorosea. Journal of Invertebrate Pathology, 105, 139–144.

    Article  CAS  PubMed  Google Scholar 

  • Braga, G. U., Flint, S. D., Miller, C. D., Anderson, A. J., & Roberts, D. W. (2001). Both solar UVA and UVB radiation impair conidial culturability and delay germination in the entomopathogenic fungus Metarhizium anisopliae. Photochemistry and Photobiology, 74, 734–739.

    Article  CAS  PubMed  Google Scholar 

  • Cabanillas, H. E., & Jones, W. A. (2009). Effects of temperature and culture media on vegetative growth of an entomopathogenic fungus Isaria sp. (Hypocreales: Clavicipitaceae) naturally affecting the whitefly, Bemisia tabaci in Texas. Mycopathologia, 167, 263–271.

    Article  PubMed  Google Scholar 

  • Crisan, E. V. (1973). Current concepts of thermophilism and the thermophilic fungi. Mycologia, 65, 1171–1198.

    Article  CAS  PubMed  Google Scholar 

  • Croos, J. N., & Bidochka, M. J. (1999). Effects of low temperature on growth parameters in the entomopathogenic fungus Metarhizium anisopliae. Canadian Journal of Microbiology, 45, 1055–1061.

    Article  Google Scholar 

  • Croos, J. N., & Bidochka, M. J. (2001). Cold-induced proteins in cold-active isolates of the insect-pathogenic fungus Metarhizium anisopliae. Mycological Research, 105, 868–873.

    Article  Google Scholar 

  • Daoust, R. A., & Roberts, D. W. (1983). Studies on the prolonged storage of Metarhizium anisopliae conidia: Effect of temperature and relative humidity on conidial viability and virulence against mosquitoes. Journal of Invertebrate Pathology, 41, 143–150.

    Article  CAS  PubMed  Google Scholar 

  • Devi, K. U., Sridevi, V., Mohan, C. M., & Padmavathi, J. (2005). Effect of high temperature and water stress on in vitro germination and growth in isolates of the entomopathogenic fungus Beauveria bassiana (Bals.) Vuillemin. Journal of Invertebrate Pathology, 88, 181–189.

    Article  PubMed  Google Scholar 

  • Dillon, R. J., & Charnley, A. K. (1990). Initiation of germination in conidia of the entomopathogenic fungus, Metarhizium anisopliae. Mycological Research, 94, 299–304.

    Article  Google Scholar 

  • Dimbi, S., Maniania, N. K., Lux, S. A., & Mueke, J. M. (2004). Effect of constant temperatures on germination, radial growth and virulence of Metarhizium anisopliae to three species of African tephritid fruit flies. BioControl, 49, 83–94.

    Article  Google Scholar 

  • Edelstein, J. D., Trumper, E. V., & Lecuona, R. E. (2005). Temperature-dependent development of the entomopathogenic fungus Nomuraea rileyi (Farlow) Samson in Anticarsia gemmatalis (Hübner) larvae (Lepidoptera: Noctuidae). Neotropical Entomology, 34, 593–599.

    Article  Google Scholar 

  • Elliot, S. L., Blanford, S., & Thomas, M. B. (2002). Host–pathogen interactions in a varying environment: Temperature, behavioural fever and fitness. Proceedings of the Royal Society of London B: Biological Sciences, 269, 1599–1607.

    Article  Google Scholar 

  • Esther, C. P., Erika, A. S., María, M. C. R., & de la Torre, M. (2013). Performance of two isolates of Isaria fumosorosea from hot climate zones in solid and submerged cultures and thermotolerance of their propagules. World Journal of Microbiology and Biotechnology, 29, 309–317.

    Article  PubMed  CAS  Google Scholar 

  • Fargues, J., & Bon, M. C. (2004). Influence of temperature preferences of two Paecilomyces fumosoroseus lineages on their co-infection pattern. Journal of Invertebrate Pathology, 87, 94–104.

    Article  CAS  PubMed  Google Scholar 

  • Fargues, J., Goettel, M. S., Smits, N., Ouedraogo, A., & Rougier, M. (1997). Effect of temperature on vegetative growth of Beauveria bassiana isolates from different origins. Mycologia, 89, 383–392.

    Article  Google Scholar 

  • Faria, M. R., & Wraight, S. P. (2007). Mycoinsecticides and mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 43, 237–256.

    Article  CAS  Google Scholar 

  • Farrell, J., & Rose, A. (1967). Temperature effects on microorganisms. Annual Reviews in Microbiology, 21, 101–120.

    Article  CAS  Google Scholar 

  • Fernandes, E. K., Rangel, D. E., Moraes, Á. M., Bittencourt, V. R., & Roberts, D. W. (2008). Cold activity of Beauveria and Metarhizium, and thermotolerance of Beauveria. Journal of Invertebrate Pathology, 98, 69–78.

    Article  PubMed  Google Scholar 

  • Fernandes, É. K., Keyser, C. A., Chong, J. P., Rangel, D. E., Miller, M. P., & Roberts, D. W. (2010). Characterization of Metarhizium species and varieties based on molecular analysis, heat tolerance and cold activity. Journal of Applied Microbiology, 108, 115–128.

    Article  CAS  PubMed  Google Scholar 

  • Fillinger, S., Chaveroche, M. K., Van Dijck, P., de Vries, R., Ruijter, G., Thevelein, J., & d’Enfert, C. (2001). Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology, 147, 1851–1862.

    Article  CAS  PubMed  Google Scholar 

  • Glare, T. R., Milner, R. J., & Chilvers, G. A. (1986). The effect of environmental factors on the production, discharge, and germination of primary conidia of Zoophthora phalloides Batko. Journal of Invertebrate Pathology, 48, 275–283.

    Article  Google Scholar 

  • Gottlieb, D. (1950). The physiology of spore germination in fungi. The Botanical Review, 16, 229–257.

    Article  CAS  Google Scholar 

  • Hallsworth, J. E., & Magan, N. (1996). Culture age, temperature, and pH affect the polyol and trehalose contents of fungal propagules. Applied and Environmental Microbiology, 62, 2435–2442.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hallsworth, J. E., & Magan, N. (1999). Water and temperature relations of growth of the entomogenous fungi Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces farinosus. Journal of Invertebrate Pathology, 74, 261–266.

    Article  CAS  PubMed  Google Scholar 

  • Hanlin, R. T. (1994). Microcycle conidiation–A review. Mycoscience, 35, 113–123.

    Article  Google Scholar 

  • Hedgecock, S., Moore, D., Higgins, P. M., & Prior, C. (1995). Influence of moisture content on temperature tolerance and storage of Metarhizium flavoviride conidia in an oil formulation. Biocontrol Science and Technology, 5, 371–378.

    Article  Google Scholar 

  • Ibrahim, L., & Jenkinson, P. (2002). Effect of artificial culture media on germination, growth, virulence and surface properties of the entomopathogenic hyphomycete Metarhizium anisopliae. Mycological Research, 106, 705–715.

    Article  Google Scholar 

  • Ignoffo, C. M., Garcia, C., & Hostetter, D. L. (1976). Effects of temperature on growth and sporulation of the entomopathogenic fungus Nomuraea rileyi. Environmental Entomology, 5, 935–936.

    Article  Google Scholar 

  • Inglis, G. D., Johnson, D. L., & Goettel, M. S. (1996). Effects of temperature and thermoregulation on mycosis by Beauveria bassiana in grasshoppers. Biological Control, 7, 131–139.

    Article  Google Scholar 

  • James, R. R., Croft, B. A., Shaffer, B. T., & Lighthart, B. (1998). Impact of temperature and humidity on host–pathogen interactions between Beauveria bassiana and a coccinellid. Environmental Entomology, 27, 1506–1513.

    Article  Google Scholar 

  • Jaronski, S. T. (2010). Ecological factors in the inundative use of fungal entomopathogens. BioControl, 55, 159–185.

    Article  Google Scholar 

  • Jung, B., Kim, S., & Lee, J. (2014). Microcyle conidiation in filamentous fungi. Mycobiology, 42, 1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keyser, C. A., Fernandes, É. K., Rangel, D. E., & Roberts, D. W. (2014). Heat-induced post-stress growth delay: A biological trait of many Metarhizium isolates reducing biocontrol efficacy? Journal of Invertebrate Pathology, 120, 67–73.

    Article  PubMed  Google Scholar 

  • Kim, D., & Lee, Y. J. (1993). Effect of glycerol on protein aggregation: Quantitation of thermal aggregation of proteins from CHO cells and analysis of aggregated proteins. Journal of Thermal Biology, 18, 41–48.

    Article  CAS  Google Scholar 

  • Kim, J. S., Skinner, M., & Parker, B. L. (2010a). Plant oils for improving thermotolerance of Beauveria bassiana. Journal of Microbiology and Biotechnology, 20, 1348–1350.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. S., Skinner, M., Hata, T., & Parker, B. L. (2010b). Effects of culture media on hydrophobicity and thermotolerance of Bb and Ma conidia, with description of a novel surfactant-based hydrophobicity assay. Journal of Invertebrate Pathology, 105, 322–328.

    Article  PubMed  Google Scholar 

  • Kim, J. S., Je, Y. H., & Roh, J. Y. (2010c). Production of thermotolerant entomopathogenic Isaria fumosorosea SFP-198 conidia in corn-corn oil mixture. Journal of Industrial Microbiology and Biotechnology, 37, 419–423.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. S., Kassa, A., Skinner, M., Hata, T., & Parker, B. L. (2011). Production of thermotolerant entomopathogenic fungal conidia on millet grain. Journal of Industrial Microbiology and Biotechnology, 38, 697–704.

    Article  CAS  PubMed  Google Scholar 

  • Lacey, L. A., Frutos, R., Kaya, H. K., & Vail, P. (2001). Insect pathogens as biological control agents: Do they have a future? Biological Control, 21, 230–248.

    Article  Google Scholar 

  • Li, J., & Feng, M. G. (2009). Intraspecific tolerance of Metarhizium anisopliae conidia to the upper thermal limits of summer with a description of a quantitative assay system. Mycological Research, 113, 93–99.

    Article  PubMed  Google Scholar 

  • Liao, X., Lu, H. L., Fang, W., & Leger, R. J. S. (2014). Overexpression of a Metarhizium robertsii HSP25 gene increases thermotolerance and survival in soil. Applied Microbiology and Biotechnology, 98, 777–783.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Q., Ying, S. H., Feng, M. G., & Jiang, X. H. (2009). Physiological implication of intracellular trehalose and mannitol changes in response of entomopathogenic fungus Beauveria bassiana to thermal stress. Antonie Van Leeuwenhoek, 95, 65–75.

    Article  CAS  PubMed  Google Scholar 

  • Luz, C., & Fargues, J. (1997). Temperature and moisture requirements for conidial germination of an isolate of Beauveria bassiana, pathogenic to Rhodnius prolixus. Mycopathologia, 138, 117–125.

    Article  CAS  PubMed  Google Scholar 

  • Malsam, O., Kilian, M., Oerke, E. C., & Dehne, H. W. (2002). Oils for increased efficacy of Metarhizium anisopliae to control whiteflies. Biocontrol Science and Technology, 12, 337–348.

    Article  Google Scholar 

  • McCammon, S. A., & Rath, A. C. (1994). Separation of Metarhizium anisopliae strains by temperature dependent germination rates. Mycological Research, 98, 1253–1257.

    Article  Google Scholar 

  • McClatchie, G. V., Moore, D., Bateman, R. P., & Prior, C. (1994). Effects of temperature on the viability of the conidia of Metarhizium flavoviride in oil formulations. Mycological Research, 98, 749–756.

    Article  Google Scholar 

  • Mendonça, C. G. D., Raetano, C. G., & Mendonça, C. G. D. (2007). Tensão superficial estática de soluções aquosas com óleos minerais e vegetais utilizados na agricultura. Engenharia Agrícola, 27, 16–23.

    Article  Google Scholar 

  • Morley-Davies, J., Moore, D., & Prior, C. (1996). Screening of Metarhizium and Beauveria spp. conidia with exposure to simulated sunlight and a range of temperatures. Mycological Research, 100, 31–38.

    Article  Google Scholar 

  • Oliveira, D. G. P., Lopes, R. B., Rezende, J. M., & Delalibera, I., Jr. (2018). Increased tolerance of Beauveria bassiana and Metarhizium anisopliae conidia to high temperature provided by oil-based formulations. Journal of Invertebrate Pathology, 151, 151–157.

    Article  CAS  PubMed  Google Scholar 

  • Osherov, N., & May, G. S. (2001). The molecular mechanisms of conidial germination. FEMS Microbiology Letters, 199, 153–160.

    Article  CAS  PubMed  Google Scholar 

  • Ouedraogo, A., Fargues, J., Goettel, M. S., & Lomer, C. J. (1997). Effect of temperature on vegetative growth among isolates of Metarhizium anisopliae and M. flavoviride. Mycopathologia, 137, 37–43.

    Article  CAS  PubMed  Google Scholar 

  • Paixao, F. R. S., Muniz, E. R., Barreto, L. P., Bernardo, C. C., Mascarin, G. M., Luz, C., & Fernandes, É. K. (2017). Increased heat tolerance afforded by oil-based conidial formulations of Metarhizium anisopliae and Metarhizium robertsii. Biocontrol Science and Technology, 27, 324–337.

    Article  Google Scholar 

  • Pedrini, N. (2018). Molecular interactions between entomopathogenic fungi (Hypocreales) and their insect host: Perspectives from stressful cuticle and hemolymph battlefields and the potential of dual RNA sequencing for future studies. Fungal Biology, 122, 538–545.

    Article  CAS  PubMed  Google Scholar 

  • Pedrini, N., Juárez, M. P., Crespo, R., & de Alaniz, M. J. (2006). Clues on the role of Beauveria bassiana catalases in alkane degradation events. Mycologia, 98, 528–534.

    Article  CAS  PubMed  Google Scholar 

  • Pereira-Junior, R. A., Huarte-Bonnet, C., Paixão, F. R., Roberts, D. W., Luz, C., Pedrini, N., & Fernandes, É. K. (2018). Riboflavin induces Metarhizium spp. to produce conidia with elevated tolerance to UV-B, and upregulates photolyases, laccases and polyketide synthases genes. Journal of Applied Microbiology, 125, 159–171.

    Article  CAS  PubMed  Google Scholar 

  • Rangel, D. E., & Roberts, D. W. (2018). Possible source of the high UV-B and heat tolerance of Metarhizium acridum (isolate ARSEF 324). Journal of Invertebrate Pathology, 157, 32–35.

    Article  PubMed  Google Scholar 

  • Rangel, D. E., Braga, G. U., Anderson, A. J., & Roberts, D. W. (2005). Variability in conidial thermotolerance of Metarhizium anisopliae isolates from different geographic origins. Journal of Invertebrate Pathology, 88, 116–125.

    Article  PubMed  Google Scholar 

  • Rangel, D. E., Alston, D. G., & Roberts, D. W. (2008). Effects of physical and nutritional stress conditions during mycelial growth on conidial germination speed, adhesion to host cuticle, and virulence of Metarhizium anisopliae, an entomopathogenic fungus. Mycological Research, 112, 1355–1361.

    Article  PubMed  Google Scholar 

  • Rangel, D. E., Fernandes, É. K., Dettenmaier, S. J., & Roberts, D. W. (2010). Thermotolerance of germlings and mycelium of the insect-pathogenic fungus Metarhizium spp. and mycelial recovery after heat stress. Journal of Basic Microbiology, 50, 344–350.

    Article  PubMed  Google Scholar 

  • Rangel, D. E., Fernandes, É. K., Anderson, A. J., & Roberts, D. W. (2012). Culture of Metarhizium robertsii on salicylic-acid supplemented medium induces increased conidial thermotolerance. Fungal Biology, 116, 438–442.

    Article  CAS  PubMed  Google Scholar 

  • Rangel, D. E., Finlay, R. D., Hallsworth, J. E., Dadachova, E., & Gadd, G. M. (2018). Fungal strategies for dealing with environment-and agriculture-induced stresses. Fungal Biology, 122, 602–612.

    Article  PubMed  Google Scholar 

  • Santos, M. P., Dias, L. P., Ferreira, P. C., Pasin, L. A., & Rangel, D. E. (2011). Cold activity and tolerance of the entomopathogenic fungus Tolypocladium spp. to UV-B irradiation and heat. Journal of Invertebrate Pathology, 108, 209–213.

    Article  PubMed  Google Scholar 

  • Souza, R. K., Azevedo, R. F., Lobo, A. O., & Rangel, D. E. (2014). Conidial water affinity is an important characteristic for thermotolerance in entomopathogenic fungi. Biocontrol Science and Technology, 24, 448–461.

    Article  Google Scholar 

  • Tseng, M. N., Chung, P. C., & Tzean, S. S. (2011). Enhancing the stress tolerance and virulence of an entomopathogen by metabolic engineering DHN-melanin biosynthesis genes. Applied and Environmental Microbiology, 77, 4508–4519, AEM-02033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tumuhaise, V., Ekesi, S., Maniania, N. K., Tonnang, H. E. Z., Tanga, C. M., Ndegwa, P. N., Irungu, L. W., Srinivasan, R., & Mohamed, S. A. (2018). Temperature-dependent growth and virulence, and mass production potential of two candidate isolates of Metarhizium anisopliae (Metschnikoff) Sorokin for managing Maruca vitrata Fabricius (Lepidoptera: Crambidae) on cowpea. African Entomology, 26, 73–83.

    Article  Google Scholar 

  • Van Laere, A. (1989). Trehalose, reserve and/or stress metabolite? FEMS Microbiology Letters, 63, 201–209.

    Article  Google Scholar 

  • Vidal, C., Fargues, J., & Lacey, L. A. (1997). Intraspecific variability of Paecilomyces fumosoroseus: Effect of temperature on vegetative growth. Journal of Invertebrate Pathology, 70, 18–26.

    Article  Google Scholar 

  • Walstad, J. D., Anderson, R. F., & Stambaugh, W. J. (1970). Effects of environmental conditions on two species of muscardine fungi (Beauveria bassiana and Metarrhizium anisopliae). Journal of Invertebrate Pathology, 16, 221–226.

    Article  Google Scholar 

  • Wang, Z. L., Zhang, L. B., Ying, S. H., & Feng, M. G. (2013). Catalases play differentiated roles in the adaptation of a fungal entomopathogen to environmental stresses. Environmental Microbiology, 15, 409–418.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Ying, S. H., Hu, Y., & Feng, M. G. (2017). Vital role for the J-domain protein Mdj1 in asexual development, multiple stress tolerance, and virulence of Beauveria bassiana. Applied Microbiology and Biotechnology, 101, 185–195.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z., Zhou, Q., Li, Y., Qiao, L., Pang, Q., & Huang, B. (2018). iTRAQ-based quantitative proteomic analysis of conidia and mycelium in the filamentous fungus Metarhizium robertsii. Fungal Biology, 122, 651–658.

    Article  PubMed  Google Scholar 

  • Wösten, H. A., & de Vocht, M. L. (2000). Hydrophobins, the fungal coat unravelled. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes, 1469, 79–86.

    Article  Google Scholar 

  • Ying, S. H., & Feng, M. G. (2004). Relationship between thermotolerance and hydrophobin-like proteins in aerial conidia of Beauveria bassiana and Paecilomyces fumosoroseus as fungal biocontrol agents. Journal of Applied Microbiology, 97, 323–331.

    Article  CAS  PubMed  Google Scholar 

  • Ying, S. H., & Feng, M. G. (2006). Medium components and culture conditions affect the thermotolerance of aerial conidia of fungal biocontrol agent Beauveria bassiana. Letters in Applied Microbiology, 43, 331–335.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L. B., & Feng, M. G. (2018). Antioxidant enzymes and their contributions to biological control potential of fungal insect pathogens. Applied Microbiology and Biotechnology, 102, 4995–5004.

    Google Scholar 

  • Zhang, S., Peng, G., & Xia, Y. (2010). Microcycle conidiation and the conidial properties in the entomopathogenic fungus Metarhizium acridum on agar medium. Biocontrol Science and Technology, 20, 809–819.

    Article  Google Scholar 

  • Zhang, S., Xia, Y., & Keyhani, N. O. (2011). Contribution of the gas1 gene of the entomopathogenic fungus Beauveria bassiana, encoding a putative glycosylphosphatidylinositol-anchored β-1, 3-glucanosyltransferase, to conidial thermotolerance and virulence. Applied and Environmental Microbiology, 77, 2676–2684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann, G. (1982). Effect of high temperatures and artificial sunlight on the viability of conidia of Metarhizium anisopliae. Journal of Invertebrate Pathology, 40, 36–40.

    Article  Google Scholar 

  • Zimmermann, G. (2007). Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Science and Technology, 17, 879–920.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolás Pedrini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paixão, F.R.S., Fernandes, É.K.K., Pedrini, N. (2019). Thermotolerance of Fungal Conidia. In: Khan, M., Ahmad, W. (eds) Microbes for Sustainable Insect Pest Management . Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-23045-6_6

Download citation

Publish with us

Policies and ethics