Skip to main content

Potential of Entomopathogenic Bacteria and Fungi

  • Chapter
  • First Online:

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP))

Abstract

Soil is a reservoir of numerous microorganisms critical for the sustainable functioning of natural and managed ecosystems. Entomopathogenic bacteria and fungi are natural enemies of pest-insects, whose utility in agroecosystems has been studied since decades. These entomopathogens spend significant time period in soil, either as saprotrophs, active conidia, resting spores or dormant endospores. In this chapter, we focus on: (a) the different bacterial and fungal species exhibiting entomopathogenicity; (b) insect-hosts and pathology; and (c) their survival in soil. Studying these aspects is of the utmost importance in fully exploiting the potential of these microorganisms. The bacterium Bacillus thuringiensis and fungi from the orders Entomophthorales and Hypocreales are discussed in more details, pertaining to the amount of literature and their dominance in the microbial biopesticide industry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguilera Sammaritano, J. A., López Lastra, C. C., Leclerque, A., Vazquez, F., Toro, M. E., D’Alessandro, C. P., Cuthbertson, A. G. S., & Lechner, B. E. (2016). Control of Bemisia tabaci by entomopathogenic fungi isolated from arid soils in Argentina. Biocontrol Science and Technology, 26, 1668–1682.

    Article  Google Scholar 

  • Alexopoulos, C. J., Mims, C. W., & Blackwell, M. (1996). Introductory mycology. New York: Wiley.

    Google Scholar 

  • Angus, T. A. (1954). A bacterial toxin paralysing silkworm larvæ. Nature, 173, 545–546.

    Article  CAS  PubMed  Google Scholar 

  • Araújo, J. P. M., & Hughes, D. P. (2016). Diversity of entomopathogenic fungi: Which groups conquered the insect body? In B. Lovett & R. J. S. Leger (Eds.), Advances in genetics (Vol. 94, pp. 1–39). Cambridge: Elsevier Academic Press Inc.

    Google Scholar 

  • Araújo, J. P. M., Evans, H. C., Kepler, R., & Hughes, D. P. (2018). Zombie-ant fungi across continents: 15 new species and new combinations within Ophiocordyceps. l. Myrmecophilous hirsutelloid species. Studies in Mycology, 90, 119–160.

    Article  PubMed  PubMed Central  Google Scholar 

  • Argôlo-Filho, R. C., & Loguercio, L. L. (2014). Bacillus thuringiensis is an environmental pathogen and host-specificity has developed as an adaptation to human-generated ecological niches. Insects, 5, 62–91.

    Article  Google Scholar 

  • Bassi, A. (1835–36). Del mal del segno calcinaccio o moscardino, malattia che affligge i bachi da seta e sul modo di liberarne lebigattaje anche le piu’infestate. Parte prima: teoria. parte se-conda: pratica. Lodi: Tipografia Orcesi.

    Google Scholar 

  • Baxter, S. W., Badenes-Pérez, F. R., Morrison, A., Vogel, H., Crickmore, N., Kain, W., Wang, P., Heckel, D. G., & Jiggins, C. D. (2011). Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera. Genetics, 189, 675–679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beegle, C. C., & Yamamoto, T. (1992). History of Bacillus thuringiensis Berliner research and development. The Canadian Entomologist, 124, 587–616.

    Article  Google Scholar 

  • Behie, S. W., Zelisko, P. M., & Bidochka, M. J. (2012). Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science, 336, 1576–1577.

    Article  CAS  PubMed  Google Scholar 

  • Berliner, E. (1915). Über die schlaffsucht der mehlmottenraupe (Ephestia kühniella Zell.) und ihren erreger Bacillus thuringiensis n. sp. Zeitschrift für Angewandte Entomologie, 2, 29–56.

    Article  Google Scholar 

  • Berry, C. (2012). The bacterium, Lysinibacillus sphaericus, as an insect pathogen. Journal of Invertebrate Pathology, 109, 1–10.

    Article  PubMed  Google Scholar 

  • Bischoff, J. F., Rehner, S. A., & Humber, R. A. (2009). A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia, 101, 512–530.

    Article  CAS  PubMed  Google Scholar 

  • Boomsma, J. J., Jensen, A. B., Meyling, N. V., & Eilenberg, J. (2014). Evolutionary interaction networks of insect pathogenic fungi. Annual Review of Entomology, 59, 467–485.

    Article  CAS  PubMed  Google Scholar 

  • Bravo, A., Gómez, I., Conde, J., Muñoz-Garay, C., Sánchez, J., Miranda, R., Zhuang, M., Gill, S. S., & Soberón, M. (2004). Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochimica et Biophysica Acta - Biomembranes, 1667, 38–46.

    Article  CAS  Google Scholar 

  • Bresolin, G., Morgan, J. A. W., Ilgen, D., Scherer, S., & Fuchs, T. M. (2006). Low temperature-induced insecticidal activity of Yersinia enterocolitica. Molecular Microbiology, 59, 503–512.

    Article  CAS  PubMed  Google Scholar 

  • Bulla, L. A., Bechtel, D. B., Kramer, K. J., Shethna, Y. I., Aronson, A. I., & Fitz-James, P. C. (1980). Ultrastructure, physiology, and biochemistry of Bacillus thuringiensis. CRC Critical Reviews in Microbiology, 8, 147–204.

    Article  CAS  PubMed  Google Scholar 

  • Butt, T. M., Jackson, C., & Magan, N. (2001). Fungi as biocontrol agents: Progress, problems and potential. Wallingford: CABI Publishing.

    Book  Google Scholar 

  • Carlos, C.G.F., Sousa, S., Salvação, J., Sharma, L., Soares, R., Manso, J., Nóbrega, M., Lopes, A., Soares, S., Aranha, J., Villemant, C., Marques, G., & Torres, L. (2013). Environmentally safe strategies to control the European grapevine moth, Lobesia botrana (Den. & Schiff.) in the douro demarcated region. Ciência e Técnica Vitivinícola, 1006–1011.

    Google Scholar 

  • Castro, T., Mayerhofer, J., Enkerli, J., Eilenberg, J., Meyling, N. V., Moral, R. D. A., Demétrio, C. G. B., & Delalibera, I. (2016). Persistence of Brazilian isolates of the entomopathogenic fungi Metarhizium anisopliae and M. robertsii in strawberry crop soil after soil drench application. Agriculture, Ecosystems & Environment, 233, 361–369.

    Article  Google Scholar 

  • Chandler, D. (2017). Basic and applied research on entomopathogenic fungi. In L. A. Lacey (Ed.), Microbial control of insect and mite pests (pp. 69–89). Amsterdam: Elsevier Academic Press.

    Chapter  Google Scholar 

  • Charles, J.-F., Nielson-LeRoux, C., & Delécluse, A. (1996). Bacillus sphaericus toxins: Molecular biology and mode of action. Annual Review of Entomology, 41, 451–472.

    Article  CAS  PubMed  Google Scholar 

  • Clifton, E. H., Jaronski, S. T., Hodgson, E. W., & Gassmann, A. J. (2015). Abundance of soil-borne entomopathogenic fungi in organic and conventional fields in the midwestern USA with an emphasis on the effect of herbicides and fungicides on fungal persistence. PLoS One, 10, e0133613.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cordova-Kreylos, A. L., Fernandez, L. E., Koivunen, M., Yang, A., Flor-Weiler, L., & Marrone, P. G. (2013). Isolation and characterization of Burkholderia rinojensis sp. nov., a non-Burkholderia cepacia complex soil bacterium with insecticidal and miticidal activities. Applied and Environmental Microbiology, 79, 7669–7678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corradi, N. (2015). Microsporidia: Eukaryotic intracellular parasites shaped by gene loss and horizontal gene transfers. Annual Review of Microbiology, 69, 167–183.

    Article  CAS  PubMed  Google Scholar 

  • Crickmore, N., Zeigler, D. R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J., & Dean, D. H. (1998). Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62, 807–813.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crickmore, N., Zeigler, D. R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J., & Dean, D. H. (2014). Bacillus thuringiensis toxin nomenclature. Retrived from http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/intro.html

  • Davidson, E. W. (2012). History of insect pathology. In F. E. Vega & H. K. Kaya (Eds.), Insect pathology (pp. 13–28). San Diego: Elsevier Academic Press.

    Chapter  Google Scholar 

  • De Barjac, H., & Bonnefoi, A. (1968). A classification of strains of Bacillus thuringiensis Berliner with a key to their differentiation. Journal of Invertebrate Pathology, 11, 335–347.

    Article  PubMed  Google Scholar 

  • De Fine Licht, H. H., Hajek, A. E., Eilenberg, J., & Jensen, A. B. (2016). Utilizing genomics to study entomopathogenicity in the fungal phylum Entomophthoromycota: A review of current genetic resources. In B. Lovett & R. J. S. Leger (Eds.), Advances in genetics (Vol. 94, pp. 41–65). Cambridge: Elsevier Academic Press Inc.

    Google Scholar 

  • De Oliveira, E. J., Rabinovitch, L., Monnerat, R. G., Passos, L. K. J., & Zahner, V. (2004). Molecular characterization of Brevibacillus laterosporus and its potential use in biological control. Applied and Environmental Microbiology, 70, 6657–6664.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dieppois, G., Opota, O., Lalucat, J., & Lemaitre, B. (2015). Pseudomonas entomophila: A versatile bacterium with entomopathogenic properties. In J.-L. Ramos, J. B. Goldberg, & A. Filloux (Eds.), Pseudomonas: New aspects of Pseudomonas biology (Vol. 7, pp. 25–49). Dordrecht: Springer.

    Google Scholar 

  • Enkerli, J., Widmer, F., & Keller, S. (2004). Long-term field persistence of Beauveria brongniartii strains applied as biocontrol agents against European cockchafer larvae in Switzerland. Biological Control, 29, 115–123.

    Article  Google Scholar 

  • Estruch, J. J., Warren, G. W., Mullins, M. A., Nye, G. J., Craig, J. A., & Koziel, M. G. (1996). Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proceedings of the National Academy of Sciences of the United States of America, 93, 5389–5394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Favret, M. E., & Yousten, A. A. (1985). Insecticidal activity of Bacillus laterosporus. Journal of Invertebrate Pathology, 45, 195–203.

    Article  CAS  PubMed  Google Scholar 

  • Federici, B. A., & Siegel, J. P. (2007). Assessment of safety of Bacillus thuringiensis and Bt crops used for insect control. In B. G. Hammond (Ed.), Safety of food proteins in agricultural crops (pp. 46–101). London: Taylor and Francis.

    Google Scholar 

  • Federici, B. A., Park, H.-W., Bideshi, D. K., Wirth, M. C., Johnson, J. J., Sakano, Y., & Tang, M. (2007). Developing recombinant bacteria for control of mosquito larvae. Journal of the American Mosquito Control Association, 23, 164–175.

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Salas, A., Alonso-Díaz, M. A., Alonso-Morales, R. A., Lezama-Gutiérrez, R., Rodríguez-Rodríguez, J. C., & Cervantes-Chávez, J. A. (2017). Acaricidal activity of Metarhizium anisopliae isolated from paddocks in the Mexican tropics against two populations of the cattle tick Rhipicephalus microplus. Medical and Veterinary Entomology, 31, 36–43.

    Article  PubMed  Google Scholar 

  • ffrench-Constant, R., & Waterfield, N. (2005). An ABC guide to the bacterial toxin complexes. In A. I. Laskin, J. W. Bennett, G. M. Gadd, & S. Sariaslani (Eds.), Advances in applied microbiology (Vol. 58, pp. 169–183). San Diego: Elsevier Academic Press Inc.

    Google Scholar 

  • Fisher, J. J., Rehner, S. A., & Bruck, D. J. (2011). Diversity of rhizosphere associated entomopathogenic fungi of perennial herbs, shrubs and coniferous trees. Journal of Invertebrate Pathology, 106, 289–295.

    Article  PubMed  Google Scholar 

  • van Frankenhuyzen, K. (2009). Insecticidal activity of Bacillus thuringiensis crystal proteins. Journal of Invertebrate Pathology, 101, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, T. M., Bresolin, G., Marcinowski, L., Schachtner, J., & Scherer, S. (2008). Insecticidal genes of Yersinia spp.: Taxonomical distribution, contribution to toxicity towards Manduca sexta and Galleria mellonella, and evolution. BMC Microbiology, 8, 214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gan, H., & Wickings, K. (2017). Soil ecological responses to pest management in golf turf vary with management intensity, pesticide identity, and application program. Agriculture, Ecosystems & Environment, 246, 66–77.

    Article  Google Scholar 

  • Garrido-Jurado, I., Torrent, J., Barrón, V., Corpas, A., & Quesada-Moraga, E. (2011a). Soil properties affect the availability, movement, and virulence of entomopathogenic fungi conidia against puparia of Ceratitis capitata (Diptera: Tephritidae). Biological Control, 58, 277–285.

    Article  Google Scholar 

  • Garrido-Jurado, I., Valverde-García, P., & Quesada-Moraga, E. (2011b). Use of a multiple logistic regression model to determine the effects of soil moisture and temperature on the virulence of entomopathogenic fungi against pre-imaginal Mediterranean fruit fly Ceratitis capitata. Biological Control, 59, 366–372.

    Article  Google Scholar 

  • Garrido-Jurado, I., Fernandez-Bravo, M., Campos, C., & Quesada-Moraga, E. (2015). Diversity of entomopathogenic Hypocreales in soil and phylloplanes of five Mediterranean cropping systems. Journal of Invertebrate Pathology, 130, 97–106.

    Article  PubMed  Google Scholar 

  • Ghikas, D. V., Kouvelis, V. N., & Typas, M. A. (2010). Phylogenetic and biogeographic implications inferred by mitochondrial intergenic region analyses and ITS1-5.8S-ITS2 of the entomopathogenic fungi Beauveria bassiana and B. brongniartii. BMC Microbiology, 10, 174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glare, T. R., & O’Callaghan, M. (2000). Bacillus thuringiensis: Biology, ecology and safety. Chichester: Wiley.

    Google Scholar 

  • Glare, T. R., Jurat-Fuentes, J. L., & O’Callaghan, M. (2017). Basic and applied research: Entomopathogenic bacteria. In L. A. Lacey (Ed.), Microbial control of insect and mite pests (pp. 47–67). San Diego: Elsevier Academic Press Inc.

    Chapter  Google Scholar 

  • Goble, T. A., Dames, J. F., P Hill, M., & Moore, S. D. (2010). The effects of farming system, habitat type and bait type on the isolation of entomopathogenic fungi from citrus soils in the eastern Cape province, South Africa. BioControl, 55, 399–412.

    Article  Google Scholar 

  • Gouli, V., Gouli, S., Marcelino, J. A., Skinner, M., & Parker, B. L. (2013). Entomopathogenic fungi associated with exotic invasive insect pests in northeastern forests of the USA. Insects, 4, 631–645.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gryganskyi, A. P., Humber, R. A., Smith, M. E., Miadlikovska, J., Wu, S., Voigt, K., & Vilgalys, R. (2012). Molecular phylogeny of the Entomophthoromycota. Molecular Phylogenetcs and Evolution, 65, 682–694.

    Article  Google Scholar 

  • Gryganskyi, A. P., Mullens, B. A., Gajdeczka, M. T., Rehner, S. A., Vilgalys, R., & Hajek, A. E. (2017). Hijacked: Co-option of host behavior by entomophthoralean fungi. PLoS Pathogens, 13, e1006274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hajek, A. E., & Meyling, N. V. (2018). Fungi. In A. E. Hajek & D. I. Shapiro-Ilan (Eds.), Ecology of invertebrate diseases (pp. 327–378). Hoboken: Wiley.

    Google Scholar 

  • Henk, D. A., & Vilgalys, R. (2007). Molecular phylogeny suggests a single origin of insect symbiosis in the Pucciniomycetes with support for some relationships within the genus Septobasidium. American Journal of Botany, 94, 1515–1526.

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Domínguez, C., & Guzmán-Franco, A. W. (2017). Species diversity and population dynamics of entomopathogenic fungal species in the genus Metarhizium—A spatiotemporal study. Microbial Ecology, 74, 194–206.

    Article  PubMed  CAS  Google Scholar 

  • Hibbett, D. S., Binder, M., Bischoff, J. F., Blackwell, M., Cannon, P. F., Eriksson, O. E., Huhndorf, S., James, T., Kirk, P. M., Lücking, R., Thorsten Lumbsch, H., Lutzoni, F., Matheny, P. B., McLaughlin, D. J., Powell, M. J., Redhead, S., Schoch, C. L., Spatafora, J. W., Stalpers, J. A., Vilgalys, R., Aime, M. C., Aptroot, A., Bauer, R., Begerow, D., Benny, G. L., Castlebury, L. A., Crous, P. W., Dai, Y. C., Gams, W., Geiser, D. M., Griffith, G. W., Gueidan, C., Hawksworth, D. L., Hestmark, G., Hosaka, K., Humber, R. A., Hyde, K. D., Ironside, J. E., Kõljalg, U., Kurtzman, C. P., Larsson, K.-H., Lichtwardt, R., Longcore, J., Miądlikowska, J., Miller, A., Moncalvo, J. M., Mozley-Standridge, S., Oberwinkler, F., Parmasto, E., Reeb, V., Rogers, J. D., Roux, C., Ryvarden, L., Sampaio, J. P., Schüßler, A., Sugiyama, J., Thorn, R. G., Tibell, L., Untereiner, W. A., Walker, C., Wang, Z., Weir, A., Weiss, M., White, M. M., Winka, K., Yao, Y. J., & Zhang, N. (2007). A higher-level phylogenetic classification of the Fungi. Mycological Research, 111, 509–547.

    Article  PubMed  Google Scholar 

  • Higes, M., Martín, R., & Meana, A. (2006). Nosema ceranae, a new microsporidian parasite in honeybees in Europe. Journal of Invertebrate Pathology, 92, 93–95.

    Article  CAS  PubMed  Google Scholar 

  • Hu, X., Xiao, G., Zheng, P., Shang, Y., Su, Y., Zhang, X., Liu, X., Zhan, S., St Leger, R. J., & Wang, C. (2014). Trajectory and genomic determinants of fungal-pathogen speciation and host adaptation. Proceedings of the National Academy of Sciences of the United States of America, 111, 16796–16801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes, W. O. H., Thomsen, L., Eilenberg, J., & Boomsma, J. J. (2004). Diversity of entomopathogenic fungi near leaf-cutting ant nests in a neotropical forest, with particular reference to Metarhizium anisopliae var. anisopliae. Journal of Invertebrate Pathology, 85, 46–53.

    Article  CAS  PubMed  Google Scholar 

  • Humber, R. A. (2008). Evolution of entomopathogenicity in fungi. Journal of Invertebrate Pathology, 98, 262–266.

    Article  PubMed  Google Scholar 

  • Humber, R. A. (2012). Entomophthoromycota: A new phylum and reclassification for entomophthoroid fungi. Mycotaxon, 120, 477–492.

    Article  Google Scholar 

  • Hurst, M. R. H., Beard, S. S., Jackson, T. A., & Jones, S. M. (2007a). Isolation and characterization of the Serratia entomophila antifeeding prophage. FEMS Microbiology Letters, 270, 42–48.

    Article  CAS  PubMed  Google Scholar 

  • Hurst, M. R. H., Jones, S. M., Tan, B., & Jackson, T. A. (2007b). Induced expression of the Serratia entomophila Sep proteins shows activity towards the larvae of the New Zealand grass grub Costelytra zealandica. FEMS Microbiology Letters, 275, 160–167.

    Article  PubMed  CAS  Google Scholar 

  • Hurst, M. R. H., Becher, S. A., Young, S. D., Nelson, T. L., & Glare, T. R. (2011a). Yersinia entomophaga sp. nov., isolated from the New Zealand grass grub Costelytra zealandica. International Journal of Systematic and Evolutionary Microbiology, 61, 844–849.

    Article  CAS  PubMed  Google Scholar 

  • Hurst, M. R. H., Jones, S. A., Binglin, T., Harper, L. A., Jackson, T. A., & Glare, T. R. (2011b). The main virulence determinant of Yersinia entomophaga MH96 ss a broad-host-range toxin complex active against insects. Journal of Bacteriology, 193, 1966–1980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim, M. A., Griko, N., Junker, M., & Bulla, L. A. (2010). Bacillus thuringiensis: A genomics and proteomics perspective. Bioengineered Bugs, 1, 31–50.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishiwata, S. C. (1901). One kind of severe flacherie (sotto disease). Dainihon Sans Kaiho, 114, 1–5.

    Google Scholar 

  • Jabbour, R., & Barbercheck, M. E. (2009). Soil management effects on entomopathogenic fungi during the transition to organic agriculture in a feed grain rotation. Biological Control, 51, 435–443.

    Article  Google Scholar 

  • Jackson, T. A., Huger, A. M., & Glare, T. R. (1993). Pathology of amber disease in the New Zealand grass grub Costelytra zealandica (Coleoptera: Scarabaeidae). Journal of Invertebrate Pathology, 61, 123–130.

    Article  Google Scholar 

  • Jackson, T. A., Boucias, D. G., & Thaler, J. O. (2001). Pathobiology of amber disease, caused by Serratia spp., in the New Zealand grass grub, Costelytra zealandica. Journal of Invertebrate Pathology, 78, 232–243.

    Article  CAS  PubMed  Google Scholar 

  • Jackson, T. A., Berry, C., & O’Callaghan, M. (2018). Bacteria. In A. E. Hajek & D. I. Shapiro-Ilan (Eds.), Ecology of invertebrate diseases (pp. 287–326). Hoboken: Wiley.

    Google Scholar 

  • James, T. Y., Kauff, F., Schoch, C. L., Matheny, P. B., Hofstetter, V., Cox, C. J., Celio, G., Gueidan, C., Fraker, E., Miadlikowska, J., Lumbsch, H. T., Rauhut, A., Reeb, V., Arnold, A. E., Amtoft, A., Stajich, J. E., Hosaka, K., Sung, G. H., Johnson, D., O’Rourke, B., Crockett, M., Binder, M., Curtis, J. M., Slot, J. C., Wang, Z., Wilson, A. W., Schuszler, A., Longcore, J. E., O’Donnell, K., Mozley Standridge, S., Porter, D., Letcher, P. M., Powell, M. J., Taylor, J. W., White, M. M., Griffith, G. W., Davies, D. R., Humber, R. A., Morton, J. B., Sugiyama, J., Rossman, A. Y., Rogers, J. D., Pfister, D. H., Hewitt, D., Hansen, K., Hambleton, S., Shoemaker, R. A., Kohlmeyer, J., Volkmann-Kohlmeyer, B., Spotts, R. A., Serdani, M., Crous, P. W., Hughes, K. W., Matsuura, K., Langer, E., Langer, G., Untereiner, W. A., Lucking, R., Budel, B., Geiser, D. M., Aptroot, A., Diederich, P., Schmitt, I., Schultz, M., Yahr, R., Hibbett, D. S., Lutzoni, F., McLaughlin, D. J., Spatafora, J. W., & Vilgalys, R. (2006). Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature, 443, 818–822.

    Article  CAS  PubMed  Google Scholar 

  • Jaronski, S. T. (2007). Soil ecology of the entomopathogenic ascomycetes: A critical examination of what we (think) we know. In K. Maniana & S. Ekesi (Eds.), Use of entomopathogenic fungi in biological pest management (pp. 91–144). Trivandrum: Research SignPosts.

    Google Scholar 

  • Jaronski, S. T. (2010). Ecological factors in the inundative use of fungal entomopathogens. BioControl, 55, 159–185.

    Article  Google Scholar 

  • Jeong, H. U., Mun, H. Y., Oh, H. K., Kim, S. B., Yang, K. Y., Kim, I., & Lee, H. B. (2010). Evaluation of insecticidal activity of a bacterial strain, Serratia sp. EML-SE1 against diamondback moth. The Journal of Microbiology, 48, 541–545.

    Article  CAS  PubMed  Google Scholar 

  • Jurat-Fuentes, J. L., & Jackson, T. A. (2012). Bacterial entomopathogens. In F. E. Vega & H. K. Kaya (Eds.), Insect pathology (pp. 265–349). San Diego: Elsevier Academic Press.

    Chapter  Google Scholar 

  • Kämpfer, P., Glaeser, S. P., Parkes, L., van Keulen, G., & Dyson, P. (2014). The family Streptomycetaceae. In E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, & F. Thompson (Eds.), The prokaryotes: Actinobacteria (pp. 889–1010). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Kepler, R. M., Ugine, T. A., Maul, J. E., Cavigelli, M. A., & Rehner, S. A. (2015). Community composition and population genetics of insect pathogenic fungi in the genus Metarhizium from soils of a long-term agricultural research system. Environmental Microbiology, 17, 2791–2804.

    Article  PubMed  Google Scholar 

  • Kershaw, M. J., Moorhouse, E. R., Bateman, R., Reynolds, S. E., & Charnley, A. K. (1999). The role of destruxins in the pathogenicity of Metarhizium anisopliae for three species of insect. Journal of Invertebrate Pathology, 74, 213–223.

    Article  CAS  PubMed  Google Scholar 

  • Keyser, C. A., De Fine Licht, H. H., Steinwender, B. M., & Meyling, N. V. (2015). Diversity within the entomopathogenic fungal species Metarhizium flavoviride associated with agricultural crops in Denmark. BMC Microbiology, 15, 249.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kil, Y. J., Seo, M. J., Kang, D. K., Oh, S. N., Cho, H. S., Youn, Y. N., Yasunaga-Aoki, C., & Yu, Y. M. (2014). Effects of Enterobacteria (Burkholderia sp.) on development of Riptortus pedestris. Journal of the Faculty of Agriculture, Kyushu University, 59, 77–84.

    Google Scholar 

  • Kim, S. K. (2011). Redescription of Simulium (Simulium) japonicum (Diptera: Simuliiae) and its entomopathogenic fungal symbionts. Entomological Research, 41, 208–210.

    Article  Google Scholar 

  • Kirk, P., Cannon, P., Stalpers, J., & Minter, D. W. (2008). Dictionary of the fungi. Wallingford: CAB International.

    Google Scholar 

  • Kirubakaran, S. A., Abdel-Megeed, A., & Senthil-Nathan, S. (2018). Virulence of selected indigenous Metarhizium pingshaense (Ascomycota: Hypocreales) isolates against the rice leaffolder, Cnaphalocrocis medinalis (Guenèe) (Lepidoptera: Pyralidae). Physiological and Molecular Plant Pathology, 101, 105–115.

    Article  Google Scholar 

  • Klein, M. G. (1988). Pest management of soil-inhabiting insects with microorganisms. Agriculture, Ecosystems & Environment, 24, 337–349.

    Article  Google Scholar 

  • Kodsueb, R., Dhanasekaran, V., Aptroot, A., Lumyong, S., McKenzie, E. H., Hyde, K. D., & Jeewon, R. (2006). The family Pleosporaceae: Intergeneric relationships and phylogenetic perspectives based on sequence analyses of partial 28S rDNA. Mycologia, 98, 571–583.

    Article  CAS  PubMed  Google Scholar 

  • Krassiltstchik, I. M. (1888). La production industrielle des parasites ve’ge’taux pour la destruction des insects nuisibles. Bulletin scientifique de la France et de la Belgique, 19, 461–472.

    Google Scholar 

  • Krych, V. K., Johnson, J. L., & Yousten, A. A. (1980). Deoxyribonucleic acid homologies among strains of Bacillus sphaericus. International Journal of Systematic and Evolutionary Microbiology, 30, 476–484.

    CAS  Google Scholar 

  • Lacey, L. A. (2007). Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. Journal of the American Mosquito Control Association, 23, 133–163.

    Article  CAS  PubMed  Google Scholar 

  • Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., & Goettel, M. S. (2015). Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology, 132, 1–41.

    Article  CAS  PubMed  Google Scholar 

  • Leclerque, A. (2008). Whole genome-based assessment of the taxonomic position of the arthropod pathogenic bacterium Rickettsiella grylli. FEMS Microbiology Letters, 283, 117–127.

    Article  CAS  PubMed  Google Scholar 

  • Longcore, J. E., & Simmons, D. R. (2012). Blastocladiomycota. eLS: Wiley.

    Google Scholar 

  • Lovett, B., & St. Leger, R. J. (2016). Advances in genetics (Vol. 94). Cambridge: Elsevier Academic Press.

    Google Scholar 

  • Lu, H. L., & St. Leger, R. J. (2016). Insect immunity to entomopathogenic fungi. In B. Lovett & R. J. S. Leger (Eds.), Advances in genetics (Vol. 94, pp. 251–285). Cambridge: Elsevier Academic Press.

    Google Scholar 

  • Lucarotti, C. J., & Shoulkamy, M. A. (2000). Coelomomyces stegomyiae infection in adult female Aedes aegypti following the first, second, and third host blood meals. Journal of Invertebrate Pathology, 75, 292–295.

    Article  CAS  PubMed  Google Scholar 

  • Małagocka, J., Grell, M. N., Lange, L., Eilenberg, J., & Jensen, A. B. (2015). Transcriptome of an entomophthoralean fungus (Pandora formicae) shows molecular machinery adjusted for successful host exploitation and transmission. Journal of Invertebrate Pathology, 128, 47–56.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, S. D. G., Hares, M. C., Jones, S. A., Harper, L. A., Vernon, J. R., Harland, D. P., Jackson, T. A., & Hurst, M. R. H. (2012). Histopathological effects of the Yen-Tc toxin complex from Yersinia entomophaga MH96 (Enterobacteriaceae) on the Costelytra zealandica (Coleoptera: Scarabaeidae) larval midgut. Applied and Environmental Microbiology, 78, 4835–4847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin, P. A. W., Hirose, E., & Aldrich, J. R. (2007). Toxicity of Chromobacterium subtsugae to southern green stink bug (Heteroptera: Pentatomidae) and corn rootworm (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 100, 680–684.

    Article  PubMed  Google Scholar 

  • Maxfield-Taylor, S. A., Mujic, A. B., & Rao, S. (2015). First detection of the larval chalkbrood disease pathogen Ascosphaera apis (Ascomycota: Eurotiomycetes: Ascosphaerales) in adult bumble bees. PLoS One, 10, e0124868.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Medo, J., & Cagáň, Ľ. (2011). Factors affecting the occurrence of entomopathogenic fungi in soils of Slovakia as revealed using two methods. Biological Control, 59, 200–208.

    Article  Google Scholar 

  • Metchnikoff, E. (1879). O boleznach litchinok khlebnogo zhuka. In: Zapiski (Ed.), Imperatorskogo obschestva sel’skogo khoziaistva luzhnoi rossii (pp. 21–50). Odessa.

    Google Scholar 

  • Meyling, N. V., & Eilenberg, J. (2006). Occurrence and distribution of soil borne entomopathogenic fungi within a single organic agroecosystem. Agriculture, Ecosystems & Environment, 113, 336–341.

    Article  Google Scholar 

  • Meyling, N. V., & Eilenberg, J. (2007). Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: Potential for conservation biological control. Biological Control, 43, 145–155.

    Article  Google Scholar 

  • Meyling, N. V., Lubeck, M., Buckley, E. P., Eilenberg, J., & Rehner, S. A. (2009). Community composition, host range and genetic structure of the fungal entomopathogen Beauveria in adjoining agricultural and seminatural habitats. Molecular Ecology, 18, 1282–1293.

    Article  CAS  PubMed  Google Scholar 

  • Meyling, N. V., Thorup-Kristensen, K., & Eilenberg, J. (2011). Below- and aboveground abundance and distribution of fungal entomopathogens in experimental conventional and organic cropping systems. Biological Control, 59, 180–186.

    Article  Google Scholar 

  • Meyling, N. V., Schmidt, N. M., & Eilenberg, J. (2012). Occurrence and diversity of fungal entomopathogens in soils of low and high Arctic Greenland. Polar Biology, 35, 1439–1445.

    Article  Google Scholar 

  • Milner, R. J. (1994). History of Bacillus thuringiensis. Agriculture, Ecosystems & Environment, 49, 9–13.

    Article  Google Scholar 

  • Money, N. P. (2016). Fungal diversity. In S. C. Watkinson, L. Boddy, & N. P. Money (Eds.), The Fungi (pp. 1–36). Boston: Elsevier Academic Press.

    Google Scholar 

  • Müller-Kögler, E. (1965). Pilzkrankheiten bei insekten. Anwendung zur biologischen scha¨dlingsbeka¨mpfung und grundlagen der insektenmykologie. Hamburg and Berlin: Paul Parey.

    Google Scholar 

  • Muñiz-Reyes, E., Guzmán-Franco, A. W., Sánchez-Escudero, J., & Nieto-Angel, R. (2014). Occurrence of entomopathogenic fungi in tejocote (Crataegus mexicana) orchard soils and their pathogenicity against Rhagoletis pomonella. Journal of Applied Microbiology, 117, 1450–1462.

    Article  PubMed  Google Scholar 

  • Muratoglu, H., Demirbag, Z., & Sezen, K. (2011). The first investigation of the diversity of bacteria associated with Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Biologia, 66, 288–293.

    Article  CAS  Google Scholar 

  • Nuñez-Valdez, M. E., Calderón, M. A., Aranda, E., Hernández, L., Ramírez-Gama, R. M., Lina, L., Rodríguez-Segura, Z., Gutiérrez, M. D. C., & Villalobos, F. J. (2008). Identification of a putative Mexican strain of Serratia entomophila pathogenic against root-damaging larvae of Scarabaeidae (Coleoptera). Applied and Environmental Microbiology, 74, 802–810.

    Article  PubMed  CAS  Google Scholar 

  • O’Callaghan, M., Garnham, M. L., Nelson, T. L., Baird, D., & Jackson, T. A. (1996). The pathogenicity of Serratia strains to Lucilia sericata (Diptera: Calliphoridae). Journal of Invertebrate Pathology, 68, 22–27.

    Article  PubMed  Google Scholar 

  • Oliveira, I., Pereira, J. A., Lino-Neto, T., Bento, A., & Baptista, P. (2012). Fungal diversity associated to the olive moth, Prays oleae Bernard: A survey for potential entomopathogenic fungi. Microbial Ecology, 63, 964–974.

    Article  PubMed  Google Scholar 

  • Ortiz-Urquiza, A., Luo, Z., & Keyhani, N. O. (2015). Improving mycoinsecticides for insect biological control. Applied Microbiology and Biotechnology, 99, 1057–1068.

    Article  CAS  PubMed  Google Scholar 

  • Pell, J. K., Eilenberg, J., Hajek, A. E., & Steinraus, D. C. (2001). Biology, ecology and pest management potential of Entomophthorales. In T. M. Butt, C. Jackson, & N. Magan (Eds.), Fungi as biocontrol agents (pp. 71–153). Wallingford: CABI Publishing.

    Google Scholar 

  • Pérez-González, V. H., Guzmán-Franco, A. W., Alatorre-Rosas, R., Hernández-López, J., Hernández-López, A., Carrillo-Benítez, M. G., & Baverstock, J. (2014). Specific diversity of the entomopathogenic fungi Beauveria and Metarhizium in Mexican agricultural soils. Journal of Invertebrate Pathology, 119, 54–61.

    Article  PubMed  Google Scholar 

  • Poinar, G. O., Wassink, H. J., Leegwater-van der Linden, M. E., & van der Geest, L. P. (1979). Serratia marcescens as a pathogen of tsetse flies. Acta Tropica, 36, 223–227.

    PubMed  Google Scholar 

  • Quesada-Moraga, E., Navas-Cortés, J. A., Maranhao, E. A. A., Ortiz-Urquiza, A., & Santiago-Álvarez, C. (2007). Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycological Research, 111, 947–966.

    Article  PubMed  Google Scholar 

  • Quesada-Moraga, E., Herrero, N., & Zabalgogeazcoa, Í. (2014). Entomopathogenic and nematophagous fungal endophytes. In V. C. Verma & A. C. Gange (Eds.), Advances in endophytic research (pp. 85–99). New Delhi: Springer.

    Chapter  Google Scholar 

  • Qureshi, N., Chawla, S., Likitvivatanavong, S., Lee, H. L., & Gill, S. S. (2014). The Cry toxin operon of Clostridium bifermentans subsp. malaysia is highly toxic to aedes larval mosquitoes. Applied and Environmental Microbiology, 80, 5689–5697.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramirez, J. L., Short, S. M., Bahia, A. C., Saraiva, R. G., Dong, Y., Kang, S., Tripathi, A., Mlambo, G., & Dimopoulos, G. (2014). Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities. PLoS Pathogens, 10, e1004398.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rath, A. C., Koen, T. B., & Yip, H. Y. (1992). The influence of abiotic factors on the distribution and abundance of Metarhizium anisopliae in Tasmanian pasture soils. Mycological Research, 96, 378–384.

    Article  Google Scholar 

  • Raymond, B., Johnston, P. R., Nielsen-LeRoux, C., Lereclus, D., & Crickmore, N. (2010). Bacillus thuringiensis: An impotent pathogen? Trends in Microbiology, 18, 189–194.

    Article  CAS  PubMed  Google Scholar 

  • Réaumur, R. A. F. (1734–1742). Mémoires pour servir à l’histoire des insectes. Leiden/Paris: Imprimerie Royale.

    Google Scholar 

  • Rehner, S. A., & Buckley, E. (2005). A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia, 97, 84–98.

    CAS  PubMed  Google Scholar 

  • Rehner, S. A., Minnis, A. M., Sung, G. H., Luangsa-Ard, J. J., Devotto, L., & Humber, R. A. (2011). Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia, 103, 1055–1073.

    Article  PubMed  Google Scholar 

  • Roberts, D. W., & Humber, R. A. (1981). Entomogenous fungi. In G. T. Cole & B. Kendrick (Eds.), Biology of conidial fungi (pp. 201–236). New York: Elsevier Academic Press.

    Chapter  Google Scholar 

  • Roy, H. E., Steinkraus, D. C., Eilenberg, J., Hajek, A. E., & Pell, J. K. (2006). Bizarre interactions and endgames: Entomopathogenic fungi and their arthropod hosts. Annual Review of Entomology, 51, 331–357.

    Article  CAS  PubMed  Google Scholar 

  • Rudeen, M. L., Jaronski, S. T., Petzold-Maxwell, J. L., & Gassmann, A. J. (2013). Entomopathogenic fungi in cornfields and their potential to manage larval western corn rootworm Diabrotica virgifera virgifera. Journal of Invertebrate Pathology, 114, 329–332.

    Article  PubMed  Google Scholar 

  • Ruiu, L. (2015). Insect pathogenic bacteria in integrated pest management. Insects, 6, 352–367.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiu, L., Delrio, G., Ellar, D. J., Floris, I., Paglietti, B., Rubino, S., & Satta, A. (2006). Lethal and sublethal effects of Brevibacillus laterosporus on the housefly (Musca domestica). Entomologia Experimentalis et Applicata, 118, 137–144.

    Article  Google Scholar 

  • Ruiu, L., Floris, I., Satta, A., & Ellar, D. J. (2007). Toxicity of a Brevibacillus laterosporus strain lacking parasporal crystals against Musca domestica and Aedes aegypti. Biological Control, 43, 136–143.

    Article  Google Scholar 

  • Ruiu, L., Satta, A., & Floris, I. (2012). Observations on house fly larvae midgut ultrastructure after Brevibacillus laterosporus ingestion. Journal of Invertebrate Pathology, 111, 211–216.

    Article  PubMed  Google Scholar 

  • Ruiu, L., Satta, A., & Floris, I. (2013). Emerging entomopathogenic bacteria for insect pest management. Bulletin of Insectology, 66, 181–186.

    Google Scholar 

  • Sánchez-Peña, S. R., Lara, J. S. J., & Medina, R. F. (2011). Occurrence of entomopathogenic fungi from agricultural and natural ecosystems in Saltillo, México, and their virulence towards thrips and whiteflies. Journal of Insect Science, 11(1), 1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheepmaker, J. W. A., & Butt, T. M. (2010). Natural and released inoculum levels of entomopathogenic fungal biocontrol agents in soil in relation to risk assessment and in accordance with EU regulations. Biocontrol Science and Technology, 20, 503–552.

    Article  Google Scholar 

  • Schneider, S., Widmer, F., Jacot, K., Kölliker, R., & Enkerli, J. (2012). Spatial distribution of Metarhizium clade 1 in agricultural landscapes with arable land and different semi-natural habitats. Applied Soil Ecology, 52, 20–28.

    Article  Google Scholar 

  • Schnepf, H. E., & Whiteley, H. R. (1981). Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 78, 2893–2897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R., & Dean, D. H. (1998). Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62, 775–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schoch, C. L., Sung, G. H., López-Giráldez, F., Townsend, J. P., Miadlikowska, J., Hofstetter, V., Robbertse, B., Matheny, P. B., Kauff, F., Wang, Z., Gueidan, C., Andrie, R. M., Trippe, K., Ciufetti, L. M., Wynns, A., Fraker, E., Hodkinson, B. P., Bonito, G., Groenewald, J. Z., Arzanlou, M., de Hoog, G. S., Crous, P. W., Hewitt, D., Pfister, D. H., Peterson, K., Gryzenhout, M., Wingfield, M. J., Aptroot, A., Suh, S. O., Blackwell, M., Hillis, D. M., Griffith, G. W., Castlebury, L. A., Rossman, A. Y., Lumbsch, H. T., Lucking, R., Budel, B., Rauhut, A., Diederich, P., Ertz, D., Geiser, D. M., Hosaka, K., Inderbitzin, P., Kohlmeyer, J., Volkmann-Kohlmeyer, B., Mostert, L., O’Donnell, K., Sipman, H., Rogers, J. D., Shoemaker, R. A., Sugiyama, J., Summerbell, R. C., Untereiner, W., Johnston, P. R., Stenroos, S., Zuccaro, A., Dyer, P. S., Crittenden, P. D., Cole, M. S., Hansen, K., Trappe, J. M., Yahr, R., Lutzoni, F., & Spatafora, J. W. (2009). The Ascomycota tree of life: A phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Systematic Biology, 58, 224–239.

    Article  CAS  PubMed  Google Scholar 

  • Scholte, E. J., Knols, B. G. J., Samson, R. A., & Takken, W. (2004). Entomopathogenic fungi for mosquito control: A review. Journal of Insect Science, 4, 1–24.

    Article  Google Scholar 

  • Sevim, A., Demir, I., Höfte, M., Humber, R. A., & Demirbag, Z. (2009). Isolation and characterization of entomopathogenic fungi from hazelnut-growing region of Turkey. BioControl, 55, 279–297.

    Article  Google Scholar 

  • Sharma, L., & Marques, G. (2018). Fusarium, an entomopathogen—A myth or reality? Pathogens, 7, 93.

    Article  PubMed Central  Google Scholar 

  • Sharma, V., Singh, P. K., Midha, S., Ranjan, M., Korpole, S., & Patil, P. B. (2012). Genome sequence of Brevibacillus laterosporus strain GI-9. Journal of Bacteriology, 194, 1279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, L., Gonçalves, F., Oliveira, I., Torres, L., & Marques, G. (2018a). Insect-associated fungi from naturally mycosed vine mealybug Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae). Biocontrol Science and Technology, 28, 122–141.

    Article  Google Scholar 

  • Sharma, L., Oliveira, I., Torres, L., & Marques, G. (2018b). Entomopathogenic fungi in Portuguese vineyards soils: Suggesting a ‘Galleria-Tenebrio-bait method’ as bait-insects Galleria and Tenebrio significantly underestimate the respective recoveries of Metarhizium (robertsii) and Beauveria (bassiana). Mycokeys, 38, 1–23.

    Article  Google Scholar 

  • Sharma, L., Oliveira, I., Raimundo, F., Torres, L., & Marques, G. (2018c). Soil chemical properties barely perturb the abundance of entomopathogenic Fusarium oxysporum: A case study using a generalized linear mixed model for microbial pathogen occurrence count data. Pathogens, 7, 89.

    Article  CAS  PubMed Central  Google Scholar 

  • Sharpe, E. S., & Detroy, R. W. (1979). Fat body depletion, a debilitating result of milky disease in Japanese beetle larvae. Journal of Invertebrate Pathology, 34, 92–94.

    Article  Google Scholar 

  • Silva Filha, M. H. N. L., Berry, C., & Regis, L. (2014). Lysinibacillus sphaericus: Toxins and mode of action, applications for mosquito control and resistance management. In T. S. Dhadialla & S. S. Gill (Eds.), Advances in insect physiology (Vol. 47, pp. 89–176). Oxford: Elsevier Academic Press Inc.

    Google Scholar 

  • Sinha, K. K., Choudhary, A. K., & Kumari, P. (2016). Entomopathogenic fungi. In Omkar (Ed.), Ecofriendly pest management for food security (pp. 475–505). San Diego: Elsevier Academic Press Inc.

    Chapter  Google Scholar 

  • Soberón, M., Gill, S. S., & Bravo, A. (2009). Signaling versus punching hole: How do Bacillus thuringiensis toxins kill insect midgut cells? Cellular and Molecular Life Sciences, 66, 1337–1349.

    Article  PubMed  CAS  Google Scholar 

  • Sorokin, N. (1883). Rastitelnye parazity cheloveka i zhivotnykn’ kak’ prichina zaraznykn’ boleznei [Plant parasites causing infectious diseases of man and animals] (Vol. 2). St Petersburg: Izdanie glavnogo Voenno-Meditsinskago Upraveleneia.

    Google Scholar 

  • Sosa-Gómez, D. R., López Lastra, C. C., & Humber, R. A. (2010). An overview of arthropod-associated fungi from Argentina and Brazil. Mycopathologia, 170, 61–76.

    Article  PubMed  Google Scholar 

  • Spatafora, J. W., Sung, G. H., Sung, J. M., Hywel-Jones, N. L., & White, J. F. (2007). Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Molecular Ecology, 16, 1701–1711.

    Article  CAS  PubMed  Google Scholar 

  • Splittstoesser, C. M., Tashiro, H., Lin, S. L., Steinkraus, K. H., & Fiori, B. J. (1973). Histopathology of the European chafer, Amphimallon majalis, infected with Bacillus popilliae. Journal of Invertebrate Pathology, 22, 161–167.

    Article  Google Scholar 

  • Steinhaus, E. A. (1949). Principles of insect pathology. New York: McGraw-Hill Book Co.

    Google Scholar 

  • Steinkraus, D. C. (2007). Documentation of naturally occurring pathogens and their impact in agroecosystems. In L. A. Lacey & H. K. Kaya (Eds.), Field manual of techniques in invertebrate pathology: Application and evaluation of pathogens for control of insects and other invertebrate pests (pp. 267–281). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Steinwender, B. M., Enkerli, J., Widmer, F., Eilenberg, J., Kristensen, H. L., Bidochka, M. J., & Meyling, N. V. (2015). Root isolations of Metarhizium spp. from crops reflect diversity in the soil and indicate no plant specificity. Journal of Invertebrate Pathology, 132, 142–148.

    Article  PubMed  Google Scholar 

  • Sun, B. D., Yu, H. Y., Chen, A. J., & Liu, X. Z. (2008). Insect-associated fungi in soils of field crops and orchards. Crop Protection, 27, 1421–1426.

    Article  Google Scholar 

  • Sung, G. H., Hywel-Jones, N. L., Sung, J. M., Luangsa-Ard, J. J., Shrestha, B., & Spatafora, J. W. (2007a). Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Studies in Mycology, 57, 5–59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sung, G. H., Sung, J. M., Hywel-Jones, N. L., & Spatafora, J. W. (2007b). A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): Identification of localized incongruence using a combinational bootstrap approach. Molecular Phylogenetcs and Evolution, 44, 1204–1223.

    Article  CAS  Google Scholar 

  • Sung, G. H., Poinar, G. O., Jr., & Spatafora, J. W. (2008). The oldest fossil evidence of animal parasitism by fungi supports a cretaceous diversification of fungal–arthropod symbioses. Molecular Phylogenetics and Evolution, 49, 495–502.

    Article  PubMed  Google Scholar 

  • Tanada, Y., & Kaya, H. K. (1993). Insect pathology. San Diego: Elsevier Academic Press Inc.

    Google Scholar 

  • Taylor, T. N., Remy, W., & Hass, H. (1992). Fungi from the lower devonian rhynie chert: Chytridiomycetes. American Journal of Botany, 79, 1233–1241.

    Article  Google Scholar 

  • Thiéry, I., Hamon, S., Gaven, B., & De Barjac, H. (1992). Host range of Clostridium bifermentans serovar. malaysia, a mosquitocidal anaerobic bacterium. Journal of the American Mosquito Control Association, 8, 272–277.

    PubMed  Google Scholar 

  • Vänninen, I., Tyni-Juslin, J., & Hokkanen, H. (2000). Persistence of augmented Metarhizium anisopliae and Beauveria bassiana in Finnish agricultural soils. BioControl, 45, 201–222.

    Article  Google Scholar 

  • Vega, F. E., Goettel, M. S., Blackwell, M., Chandler, D., Jackson, M. A., Keller, S., Koike, M., Maniania, N. K., Monzón, A., Ownley, B. H., Pell, J. K., Rangel, D. E. N., & Roy, H. E. (2009). Fungal entomopathogens: New insights on their ecology. Fungal Ecology, 2, 149–159.

    Article  Google Scholar 

  • Vega, F. E., Meyling, N. V., Luangsa-Ard, J. J., & Blackwell, M. (2012). Fungal entomopathogens. In F. E. Vega & H. K. Kaya (Eds.), Insect pathology (pp. 171–220). San Diego: Elsevier Academic Press.

    Chapter  Google Scholar 

  • Vilcinskas, A. (2010). Coevolution between pathogen-derived proteinases and proteinase inhibitors of host-insects. Virulence, 1, 206–214.

    Article  PubMed  Google Scholar 

  • Weir, A., & Blackwell, M. (2005). Fungal biotrophic parasites of insects and other arthropods. In F. E. Vega & M. Blackwell (Eds.), Insect-fungal associations: Ecology and evolution (pp. 119–145). New York: Oxford University Press.

    Google Scholar 

  • West, A. W., Burges, H. D., Dixon, T. J., & Wyborn, C. H. (1985). Effect of incubation in non-sterilised and autoclaved arable soil on survival of Bacillus thuringiensis and Bacillus cereus spore inocula. New Zealand Journal of Agricultural Research, 28, 559–566.

    Article  Google Scholar 

  • White, M. M., James, T. Y., O’Donnell, K., Cafaro, M., Tanabe, Y., & Sugiyama, J. (2006). Phylogeny of the Zygomycota based on nuclear ribosomal sequence data. Mycologia, 98, 872–884.

    Article  PubMed  Google Scholar 

  • Wirth, M. C., Berry, C., Walton, W. E., & Federici, B. A. (2014). Mtx toxins from Lysinibacillus sphaericus enhance mosquitocidal cry-toxin activity and suppress cry-resistance in Culex quinquefasciatus. Journal of Invertebrate Pathology, 115, 62–67.

    Article  CAS  PubMed  Google Scholar 

  • Wittner, M., & Weiss, L. M. (1999). The Microsporidia and Microsporidiosis. Washington, DC: American Society of Microbiology.

    Book  Google Scholar 

  • Wraight, S. P., Inglis, G. D., & Goettel, M. S. (2007). Fungi. In L. A. Lacey & H. K. Kaya (Eds.), Field manual of techniques in invertebrate pathology: Application and evaluation of pathogens for control of insects and other invertebrate pests (pp. 223–248). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Yousef, M., Quesada-Moraga, E., & Garrido-Jurado, I. (2015). Compatibility of herbicides used in olive orchards with a Metarhizium brunneum strain used for the control of preimaginal stages of tephritids in the soil. Journal of Pest Science, 88, 605–612.

    Article  Google Scholar 

  • Zhang, K. Q., & Hyde, K. D. (2014). Nematode-Trapping Fungi (Fungal Diversity Research Series, Vol. 23). Dordrecht: Springer.

    Book  Google Scholar 

  • Zhang, J., Hodgman, T. C., Krieger, L., Schnetter, W., & Schairer, H. U. (1997). Cloning and analysis of the first cry gene from Bacillus popilliae. Journal of Bacteriology, 179, 4336–4341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Candas, M., Griko, N. B., Taussig, R., & Bulla, L. A. (2006). A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proceedings of the National Academy of Sciences of the United States of America, 103, 9897–9902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, C. X., Yang, S. Y., Xu, M. X., Sun, J., Liu, H., Liu, J. R., Liu, H., Kan, F., Sun, J., Lai, R., & Zhang, K. Y. (2009). Serratia nematodiphila sp. nov., associated symbiotically with the entomopathogenic nematode Heterorhabditidoides chongmingensis (Rhabditida: Rhabditidae). International Journal of Systematic and Evolutionary Microbiology, 59, 1603–1608.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann, G. (2007). Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology, 17, 553–596.

    Article  Google Scholar 

Download references

Acknowledgement

This work is a part of L. Sharma’s PhD dissertation at the ‘University of Trás-os-Montes and Alto Douro’, Vila Real, Portugal. The funding was provided by the ‘Centre for the Research and Technology of Agro-Environmental and Biological Sciences’ (CITAB) through the fellowship: BIM/UTAD/16/2018; and by the EcoVitis project. National Funds by FCT – Portuguese Foundation for Science and Technology, UID/AGR/04033/2013; and the European Investment Funds by FEDER/COMPETE/POCI Operacional Competitiveness and Internationalization Programme, under the Project POCI-01-0145-FEDER-006958, are also acknowledged. Due to the limited space, we could not cite many relevant articles. However, we deeply acknowledge those works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lav Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, L., Bohra, N., Singh, R.K., Marques, G. (2019). Potential of Entomopathogenic Bacteria and Fungi. In: Khan, M., Ahmad, W. (eds) Microbes for Sustainable Insect Pest Management . Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-23045-6_4

Download citation

Publish with us

Policies and ethics