Skip to main content

Molecular Phylogeny of Entomopathogens

  • Chapter
  • First Online:
Microbes for Sustainable Insect Pest Management

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP))

Abstract

Insects, like other organisms, are susceptible to a variety of diseases caused by bacteria, viruses, fungi, protozoan and nematodes. Insect pathogens show a wide variety of interactions with their hosts that facilitate their replication and transmission, including strategies for evading the host’s defences towards invasion of microorganisms, and for manipulating their hosts physiology and behaviour. By applying a wide range of molecular techniques and approaches, better understandings of these interactions and of the roles played by both host and virulent genes have been understood.

The control of insect pests with entomopathogens is an unique approach, in that naturally occurring host-pathogen relations are manipulated to the benefit of man, protecting agricultural crops and forests or controlling insect vectors of diseases. The isolation and identification of a pathogen followed by the phylogenetic classification of entomopathogens are the basic principles in insect pathology. Full genomic DNA sequencing techniques are used to assess the genetic diversity and phylogenetic analyses of entomopathogens. Alternatively, specific genes of interest can be targeted for sequencing. Sequences of single gene have been extensively used to assess phylogenetic relationships of known and novel isolates. However, the lack of sufficient resolution and disagreement with other gene phylogenies has prompted investigation of other genes and methods to further explore evolutionary relationships of entomopathogens. Therefore, phylogenies based on combined sequences of shared genes or the complete genome sequencing have been found to be more robust, providing more phylogenetic information and increasing robustness of evolutionary hypotheses. With the increasing efficiency and lower cost of whole genome sequencing, whole-genome studies of entomopathogens will refine knowledge about their evolutionary history and enable direct insight into the biology of entomopathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, M. J., Lefkowitz, E. J., King, A. M. Q., & Carstens, E. B. (2013). Recently agreed changes to the International Code of Virus Classification and Nomenclature. Archives of virology, 158, 2633–2639.

    Article  CAS  PubMed  Google Scholar 

  • Afonso, C. L., Tulman, E. R., Lu, Z., Oma, E., Kutish, G. F., & Rock, D. L. (1999). The genome of Melanoplus sanguinipes entomopoxvirus. Journal of virology, 73, 533–552.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Afonso, C. L., Tulman, E. R., Lu, Z., Balinsky, C. A., Moser, B. A., Becnel, J. J., & Kutish, G. F. (2001). Genome sequence of a baculovirus pathogenic for Culex nigripalpus. Journal of virology, 75, 11157–11165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal, Y., Khatri, I., Subramanian, S., & Shenoy, B. D. (2015). Genome sequence, comparative analysis, and evolutionary insights into chitinases of entomopathogenic fungus Hirsutella thompsonii. Genome Biology and Evolution, 7, 916–930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed, A. M., Motoi, Y., Sato, M., Maruyama, A., Watanabe, H., Fukumoto, Y., & Shimamoto, T. (2007). Zoo animals as reservoirs of gram-negative bacteria harboring integrons and antimicrobial resistance genes. Applied and Environmental Microbiology, 73, 6686–6690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aime, M. C., Matheny, P. B., Henk, D. A., Frieders, E. M., Nilsson, R. H., Piepenbring, M., & Bauer, R. (2006). An overview of the higher level classification of Pucciniomycotina based on combined analyses of nuclear large and small subunit rDNA sequences. Mycologia, 98, 896–905.

    Article  CAS  PubMed  Google Scholar 

  • Akhurst, R. J., & Boemare, N. E. (1986). A non-luminescent strain of Xenorhabdus luminescens (Enterobacteriaceae). Microbiology, 132, 1917–1922.

    Article  CAS  Google Scholar 

  • Akhurst, R. J., Boemare, N. E., Janssen, P. H., Peel, M. M., Alfredson, D. A., & Beard, C. E. (2004). Taxonomy of Australian clinical isolates of the genus Photorhabdus and proposal of Photorhabdus asymbiotica subsp. asymbiotica subsp. nov. and P. asymbiotica subsp. australis subsp. nov. International Journal of Systematic and Evolutionary Microbiology, 54, 1301–1310.

    Article  CAS  PubMed  Google Scholar 

  • Alexopoulos, C. J., Mims, C. W., & Blackwell, M. (1996). Introductory Mycology (4th ed., p. 869). New York: Wiley.

    Google Scholar 

  • Allaway, G. P., & Payne, C. C. (1983). A biochemical and biological comparison of three European isolates of NPV virus from Agrotis segetum. Archives of Virology, 75, 43–54.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, R. M., & May, R. M. (1981). The population dynamics of microparasites and their invertebrate hosts. Philosophical Transactions of the Royal Society B, 291(1054), 451–524.

    Article  Google Scholar 

  • Anderson, D. L., Gibbs, A. J., & Gibson, N. L. (1998). Identification and phylogeny of spore-cyst fungi (Ascosphaera spp.) using ribosomal DNA sequences. Mycological Research, 102, 541–547.

    Article  CAS  Google Scholar 

  • Araujo, J. P., & Hughes, D. P. (2016). Diversity of entomopathogenic fungi: which groups conquered the insect body? In Advances in genetics (Vol. 94, pp. 1–39). San Diego: Academic.

    Google Scholar 

  • Arends, H. M., & Jehle, J. A. (2002). Homologous recombination between the inverted terminal repeats of defective transposon TCp3. 2 causes an inversion in the genome of Cydia pomonella granulovirus. Journal of general virology, 83, 1573–1578.

    Article  CAS  PubMed  Google Scholar 

  • Arif, B. M. (1984). The entomopoxviruses. Advances in Virus Research, 29, 195–201.

    Article  CAS  PubMed  Google Scholar 

  • Ash, C., Priest, F. G., & Collins, M. D. (1993). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek, 64, 253–260.

    Article  CAS  PubMed  Google Scholar 

  • Ashelford, K. E., Weightman, A. J., & Fry, J. C. (2002). PRIMROSE: A computer program for generating and estimating the phylogenetic range of 16S rRNA oligonucleotide probes and primers in conjunction with the RDPII database. Nucleic Acids Research, 30, 3481–3489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badii, M. H., & Abreu, J. L. (2006). Control biolĂłgico una forma sustentable de control de plagas [Biological control a sustainable way of pest control]. Daena: International Journal of Good Conscience, 1, 82–89.

    Google Scholar 

  • Bahar, A., & Demirbag, Z. (2007). Isolation of pathogenic bacteria from Oberea linearis (Coleptera: Cerambycidae). Biologia, 62, 13–18.

    Article  CAS  Google Scholar 

  • Balch, W. E., Schoberth, S., Tanner, R. S., & Wolfe, R. S. (1977). Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. International Journal of Systematic and Evolutionary Microbiology, 27, 355–361.

    CAS  Google Scholar 

  • Baldauf, S. L., Roger, A. J., Wnek-Siefert, I., & Doolittle, W. F. (2000). A kingdom-level phylogeny of eukaryotes based on combined protein data. Science, 290, 972–977.

    Article  CAS  PubMed  Google Scholar 

  • Batista, F. A. (1989). Controle biolĂłgico e o manejo integrado de pragas. BiolĂłgico, 55, 36–39.

    Google Scholar 

  • Battistuzzi, F. U., Feijao, A., Hedges, S. B., & Hedger, S. B. (2004). A genomic timescale of prokaryote evolution: Insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evolutionary Biology, 4, 44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bawden, A. L., Glassberg, K. J., Diggans, J., Shaw, R., Farmerie, W., & Moyer, R. W. (2000). Complete genomic sequence of the Amsacta moorei entomopoxvirus: Analysis and comparison with other Poxviruses. Virology, 274, 120–139.

    Article  CAS  PubMed  Google Scholar 

  • Berbee, M. L., & Taylor, J. W. (2001). Fungal molecular evolution: Gene trees and geologic time. In D. J. McLaughlin, E. G. McLaughlin, & P. A. Lemke (Eds.), The Mycota, vol. 7A, Systematics and Evolution (pp. 229–245). New York: Springer.

    Chapter  Google Scholar 

  • Berliner, E. (1915). Ăśber die Schlaffsucht der Mehlmottenraupe (Ephestia kĂĽhniella Zell.) und ihren Erreger Bacillus thuringiensis n. sp. Zeitschrift fĂĽr Angewandte Entomologie, 2, 29–56.

    Article  Google Scholar 

  • Bernhardt, J., Völker, U., Völker, A., Antelmann, H., Schmid, R., Mach, H., & Hecker, M. (1997). Specific and general stress proteins in Bacillus subtilis – A two-dimensional protein electrophoresis study. Microbiology, 143, 999–1017.

    Article  CAS  PubMed  Google Scholar 

  • Betz, F. S., Hammond, B. G., & Fuchs, R. L. (2000). Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Regulatory Toxicology and Pharmacology, 32(2), 156–173.

    Article  CAS  PubMed  Google Scholar 

  • Bird, F. T., & Elgee, D. E. (1957). A virus disease and introduced parasites as factors controlling the European spruce sawfly, Diprion hercyinae (Htg.) in central New Brunswick. Canadian Entomologist, 89, 371–378.

    Article  Google Scholar 

  • Bischoff, J. F., Rehner, S. A., & Humber, R. A. (2009). A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia, 101, 512–530.

    Article  CAS  PubMed  Google Scholar 

  • Black, B. C., Brennan, L. A., Dierks, P. M., & Gard, I. E. (1997). Commercialization of baculoviral insecticides. In L. K. Miller (Ed.), The Baculoviruses (pp. 341–387). New York: Plenum Press.

    Chapter  Google Scholar 

  • Blackwell, M. (2011). The Fungi: 1, 2, 3… 5.1 million species? American Journal of Botany, 98, 426–438.

    Article  PubMed  Google Scholar 

  • Blissard, G. W., & Wenz, J. R. (1992). Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion. Journal of virology, 66, 6829–6835.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bode, H. B. (2009). EB as a source of secondary metabolites. Current opinion in chemical Biology, 13, 224–230.

    Article  CAS  PubMed  Google Scholar 

  • Boemare, N., & Tailliez, P. (2009). Molecular approaches and techniques for the study of EB. In S. P. Stock et al. (Eds.), Insect pathogens: Molecular approaches and techniques (pp. 32–45). Cambridge, MA: CAB Internatinal.

    Chapter  Google Scholar 

  • Bonsall, M. B., Godfray, H. C. J., Briggs, C. J., & Hassel, M. P. (1999). Does host self regulation increase the likelihood of insect-pathogen population cycles? The American Naturalist, 153, 228–235.

    Article  CAS  PubMed  Google Scholar 

  • Boomsma, J. J., Jensen, A. B., Meyling, N. V., & Eilenberg, J. (2014). Evolutionary interaction networks of insect pathogenic fungi. Annual Review of Entomology, 59, 467–485.

    Article  CAS  PubMed  Google Scholar 

  • Boots, M., & Norman, R. (2000). Sublethal infection and the population dynamics of host–microparasite interactions. Journal of Animal Ecology, 69, 517–524.

    Article  Google Scholar 

  • Boughton, A. J., Harison, R. L., Lewis, L. C., & Bonning, B. C. (1999). Characterization of a nucleopolyhedrosis from the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae). Journal of invertebrate pathology, 74, 289–294.

    Article  CAS  PubMed  Google Scholar 

  • Bowen, D., Rocheleau, T. A., Blackburn, M., Andreev, O., Golubeva, E., & Bhartia, R. (1998). Insecticidal toxins from the bacterium Photorhabdus luminescens. Science, 280, 2129–2132.

    Article  CAS  PubMed  Google Scholar 

  • Bowers, R. G., Begon, M., & Hodgkinson, D. E. (1993). Host-pathogen population cycles in forest insects? Lessons from simple models reconsidered. Oikos, 67, 529–538.

    Article  Google Scholar 

  • Brenner, D. J., Krieg, N. R., Staley, J. T., & Garrity, G. M. (2005). Bergey’s Manual of Systematic Bacteriology, 2nd ed., vol. 2, parts A, B and C. New York: Springer.

    Book  Google Scholar 

  • Briggs, C. J., & Godfray, H. C. J. (1995). Models of intermediate complexity in insect-pathogen interactions: population dynamics of the microsporidian pathogen, Nosema pyrausta, of the European corn borer, Ostrinia nubilalis. Parasitology, 111(S1), S71–S89.

    Article  Google Scholar 

  • Burden, J. P., Nixon, C. P., Hodgkinson, A. E., Possee, R. D., Sait, S. M., King, L. A., & Hails, R. S. (2003). Covert infections as a mechanism for long-term persistence of baculoviruses. Ecology Letters, 6, 524–531.

    Article  Google Scholar 

  • Bushley, K. E., Raja, R., Jaiswal, P., Cumbie, J. S., Nonogaki, M., Boyd, A. E., & Spatafora, J. W. (2013). The genome of Tolypocladium inflatum: evolution, organization, and expression of the cyclosporin biosynthetic gene cluster. PLoS Genetics, 9, e1003496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butt, T. M., Hajek, A. E., & Humber, R. A. (1996). Gypsy moth immune defenses in response to hyphal bodies and natural protoplasts of entomophthoralean fungi. Journal of Invertebrate Pathology, 68, 278–285.

    Article  CAS  PubMed  Google Scholar 

  • Butt, T. M., Wang, C., Shah, F. A., & Hall, R. (2006). Degeneration of entomogenous fungi. In An ecological and societal approach to biological control (pp. 213–226). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Carlson, C. R., & Kolstø, A. B. (1993). A complete physical map of a Bacillus thuringiensis chromosome. Journal of Bacteriology, 175, 1053–1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casjens, S. (1998). The diverse and dynamic structure of bacterial genomes. Annual Review of Genetics, 32, 339–377.

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith, T. (2001). What are fungi? In Systematics and Evolution (pp. 3–37). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Chakraborty, S., Monsour, C., Teakle, R., & Reid, S. (1999). Yield, biological activity, and field performance of a wild-type Helicoverpa Nucleopolyhedrovirus produced in H. zea cell cultures. Journal of invertebrate pathology, 73, 199–205.

    Article  CAS  PubMed  Google Scholar 

  • Chang, Y., Wang, S., Sekimoto, S., Aerts, A. L., Choi, C., Clum, A., & Berbee, M. L. (2015). Phylogenomic analyses indicate that early fungi evolved digesting cell walls of algal ancestors of land plants. Genome Biology and Evolution, 7, 1590e1601.

    Article  CAS  Google Scholar 

  • Charles, J. F., & Nicolas, L. (1986). Recycling of Bacillus sphaericus 2362 in mosquito larvae: A laboratory study. In Annales de l’Institut Pasteur/Microbiologie. Elsevier Masson, 137(1), 101–111.

    Google Scholar 

  • Chattopadhyay, A., Bhatnagar, N. B., & Bhatnagar, R. (2004). Bacterial insecticidal toxins. Critical Reviews in Microbiology, 30, 33–54.

    Article  CAS  PubMed  Google Scholar 

  • Choi, J. Y., Woo, S. D., Je, Y. H., & Kang, S. K. (1999). Development of a novel expression vector system using Spodoptera exigua nucleopolyhedrovirus. Molecules and cells, 9, 504–509.

    CAS  PubMed  Google Scholar 

  • Cohn, F. J. (1872). tVber Bakterien, die kleinsten lebenden Wesen. Sammlung gemeinverstandlicher wissenschaftlicher Vortrage, 7, Heft 165, pp. 35. Berlin (also edited for American students by Oswald Seidenstieker, 1889, New York, Holt, pp. 35). Translated in 1881 by Charles S. Dolley with title “On Bacteria, the Smallest of Living Organisms.” Reprinted with introduction by Morris C. Leikind in Bulletin of Medical History, 1939, VII, pp. 49–92.

    Google Scholar 

  • Cooper, D., Cory, J. S., Theilmann, D. A., & Myers, J. H. (2003). Nucleopolyhedroviruses of forest and western tent caterpillars: Cross infectivity and evidence for activation of latent virus in high density field populations. Ecological Entomology, 28, 41–50.

    Article  Google Scholar 

  • Copping, L. G., & Menn, J. J. (2000). Biopesticides: A review of their action, applications and efficacy. Pest Management Science: Formerly Pesticide Science, 56, 651–676.

    Article  CAS  Google Scholar 

  • Cornalia, E. (1856). Monographia del bombice del gelso. Mem. I. R. 1st Lombardo di Scienzelet. Arti., Bernardoni di Gio, Milano, pp. 348–351.

    Google Scholar 

  • Cory, J. S., & Myers, J. H. (2003). The ecology and evolution of insect baculoviruses. Annual Review of Ecology, Evolution, and Systematics, 34, 239–272.

    Article  Google Scholar 

  • Crickmore, N. (2000). The diversity of Bacillus thuringiensis δ-endotoxins. In EB: From laboratory to field application (pp. 65–79). Dordrecht: Springer.

    Google Scholar 

  • Crickmore, N., Zeigler, D. R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J., & Dean, D. H. (1998). Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62, 807–813.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Croizier, G., Croizier, L., Argaud, O., & Poudevigne, D. (1994). Extension of Autographa californica nuclear polyhedrosis virus host range by interspecific replacement of a short DNA sequence in the p143 helicase gene. Proceedings of the National Academy of Sciences, 91, 48–52.

    Article  CAS  Google Scholar 

  • Cui, L., Cheng, X., Li, L., & Li, J. (2007). Identification of Trichoplusia ni ascovirus 2c virion structural proteins. Journal of general virology, 88, 2194–2197.

    Article  CAS  PubMed  Google Scholar 

  • Currie, C. R., Wong, B., Stuart, A. E., Schultz, T. R., Rehner, S. A., Mueller, U. G., Sung, G. H., Spatafora, J. W., & Straus, N. A. (2003). Ancient tripartite coevolution in the attine ant-microbe symbiosis. Science, 299, 386–388.

    Article  CAS  PubMed  Google Scholar 

  • Dauga, C. (2002). Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae: A model molecule for molecular systematic studies. International Journal of Systematic and Evolutionary Microbiology, 52, 531–547.

    Article  CAS  PubMed  Google Scholar 

  • Dauga, C., Grimont, F., & Grimont, P. A. D. (1990). Nucleotide sequences of 16S rRNA from ten Serratia species. Research in Microbiology, 141, 1139–1149.

    Article  CAS  PubMed  Google Scholar 

  • De Barjac, H., & Lemille, F. (1970). Presence of flagellar antigenic subfactors in Serotype 3 of Bacillus thuringiensis. Journal of Invertebrate Pathology, 15, 139–140.

    Article  Google Scholar 

  • de Bekker, C., Ohm, R. A., Loreto, R. G., Sebastian, A., Albert, I., Merrow, M., & Hughes, D. P. (2015). Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation. BMC Genomics, 16, 620.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Faria, M. R., & Wraight, S. P. (2007). Mycoinsecticides and mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 43, 237–256.

    Article  CAS  Google Scholar 

  • De Kesel, A. (1996). Host specificity and habitat preference of Laboulbenia slackensis. Mycologia, 88, 565–573.

    Article  Google Scholar 

  • de Maagd, R. A., Bosch, D., & Stiekema, W. (1999). Bacillus thuringiensis toxin-mediated insect resistance in plants. Trends in Plant Science, 4, 9–13.

    Article  PubMed  Google Scholar 

  • de Maagd, R. A., Weemen-Hendriks, M., Molthoff, J. W., & Naimov, S. (2003). Activity of wild-type and hybrid Bacillus thuringiensis δ-endotoxins against Agrotis ipsilon. Archives of Microbiology, 179, 363–367.

    Article  PubMed  CAS  Google Scholar 

  • Delgado, P. A. M., & Murcia, O. P. (2011). Hongos entomopatĂłgenos: uma alternativa para la obtenciĂłn de Biopesticidas. Ambi-Agua, 6, 77–90.

    Article  Google Scholar 

  • Delhon, G., Tulman, E. R., Afonso, C. L., Lu, Z., Becnel, J. J., Moser, B. A., & Rock, D. L. (2006). Genome of invertebrate iridescent virus type 3 (mosquito iridescent virus). Journal of virology, 80, 8439–8449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, S., Guindon, V., Lefort, M., Lescot, J. M., & Gascuel, C. O. (2008). Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Research, 36, W465–W469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devulder, G., Perrie`re, G., Baty, F., & Flandrois, J. P. (2003). BIBI, a bioinformatics bacterial identification tool. Journal of Clinical Microbiology, 41, 1785–1787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Giulio, M. (2003). The ancestor of the bacteria domain was a hyperthermophile. Journal of Theoretical Biology, 224, 277–283.

    Article  PubMed  CAS  Google Scholar 

  • Dodd, S. J., Hurst, M. R., Glare, T. R., O’Callaghan, M., & Ronson, C. W. (2006). Occurrence of sap insecticidal toxin complex genes in Serratia spp. and Yersinia frederiksenii. Applied and Environmental Microbiology, 72, 6584–6592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle, J. J. (1992). Gene trees and species trees: Molecular systematics as one-character taxonomy. Systematic Botany, 17, 144–163.

    Article  Google Scholar 

  • Doyle, C. J., Hirst, M. L., Cory, J. S., & Entwistle, P. F. (1990). Risk assessment studies: detailed host range testing of wild-type cabbage moth, Mamestra brassicae (Lepidoptera: Noctuidae), nuclear polyhedrosis virus. Applied and Environmental Microbiology, 56, 2704–2710.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duchaud, E., Rusniok, C., Frangeul, L., Buchrieser, C., Givaudan, A., Taourit, S., & Dassa, E. (2003). The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nature Biotechnology, 21, 1307.

    Article  CAS  PubMed  Google Scholar 

  • Dwyer, G., Elkinton, J. S., & Buonaccorsi, J. P. (1997). Host heterogeneity in susceptibility and disease dynamics: Tests of a mathematical model. The American Naturalist, 150, 685–707.

    Article  CAS  PubMed  Google Scholar 

  • Dwyer, G., Dushoff, J., Elkinton, J. S., & Levin, S. A. (2000). Pathogen-driven outbreaks in forest defoliators revisited: Building models from experimental data. The American Naturalist, 156, 105–120.

    Article  PubMed  Google Scholar 

  • Dykhuizen, D. E., & Green, L. (1991). Recombination in Escherichia coli and the definition of biological species. Journal of Bacteriology, 173, 7257–7268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Easwaramoorthy, E., & Jayaraj, S. (1989). Vertical transmission of granulosis virus of sugarcane shoot borer. Chilo infuscatellus Snell. Tropical Pest Management, 35, 352–353.

    Article  Google Scholar 

  • Ebert, D. (1994). Virulence and local adaptation of a horizontally transmitted parasite. Science, 265, 1084–1086.

    Article  CAS  PubMed  Google Scholar 

  • Eilenberg, J., Hajek, A., & Lomer, C. (2001). Suggestions for unifying the terminology in biological control. BioControl, 46, 387–400.

    Article  Google Scholar 

  • Eisen, J. A. (1995). The RecA protein as a model molecule for molecular systematic studies of bacteria: Comparison of trees of RecAs and 16S rRNAs from the same species. Journal of Molecular Evolution, 41, 1105–1123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Salamouny, S., Lange, M., Jutzi, M., Huber, J., & Jehle, J. A. (2003). Comparative study on the susceptibility of cutworms (Lepidoptera: Noctuidae) to Agrotis segetum nucleopolyhedrovirus and Agrotis ipsilon nucleopolyhedrovirus. Journal of Invertebrate Pathology, 84, 75–82.

    Article  CAS  PubMed  Google Scholar 

  • Entwistle, P. F., Forkner, A. C., Green, B. M., & Cory, J. S. (1993). Avian dispersal of nuclear polyhedrosis viruses after induced epizootics in the pine beauty moth, Panolis flammea (Lepidoptera: Noctuidae). Biological Control, 3, 61–69.

    Article  Google Scholar 

  • Ergashev, K., Guzalova, A. G., & Leclerque, A. (2009). Phylogenetic characterization of entomopathogenic fungi from Uzbekistan. Insect Pathogens and Insect Parasitic Nematodes. IOBC/WPRS Bulletin, 45, 311–314.

    Google Scholar 

  • Evans, H. F. (1986). Ecology and epizootiology of baculoviruses. In R. R. Granados & B. A. Fedrici (Eds.), The biology of Baculoviruses: Volume II, practical application for insect control (pp. 89–132). Boca Raton: CRC Press.

    Google Scholar 

  • Evans, H. C., & Samson, R. A. (1982). Entomogenous fungi from the Galapagos islands. Canadian Journal of Botany, 60, 2325–2333.

    Article  Google Scholar 

  • Evans, R. C., & Samson, R. A. (1984). Cordyceps species and their anamorphs pathogenic on ants (Formicidae) in tropical forest ecosystems II. The Camponotus (Formicinae) complex. Transactions of the British Mycological Society, 81, 127–150.

    Article  Google Scholar 

  • Fang, M., Nie, Y., Harris, S., Erlandson, M. A., & Theilmann, D. A. (2009). Autographa californica multiple nucleopolyhedrovirus core gene ac96 encodes a per os infectivity factor (pif-4). Journal of virology, 83, 12569–12578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U., & Ball, L. A. (2005). Virus taxonomy. Eighth report of the international committee on taxonomy of viruses, 8, 455–465.

    Google Scholar 

  • Federici, B. A. (1978). Baculovirus epizootic in a larval population of the clover cutworm, Scotogramma trifolii, in southern California. Environmental Entomology, 7, 423–427.

    Article  Google Scholar 

  • Federici, B. A. (1997). Baculovirus pathogenesis. In The Baculoviruses (pp. 33–59). Boston: Springer.

    Chapter  Google Scholar 

  • Feitelson, J. S., Payne, J., & Kim, L. (1992). Bacillus thuringiensis: Insects and beyond. Nature Biotechnology, 10, 271.

    Article  Google Scholar 

  • Fernandes, E. G., ValĂ©rio, H. M., Feltrin, T., & Van Der Sand, S. T. (2012). Variability in the production of extracellular enzymes by entomopathogenic fungi grown on different substrates. Brazilian Journal of Microbiology, 43, 827–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischhoff, D. A., Bowdish, K. S., & Perlak, F. J. (1987). Insect tolerant transgenic tomato plants. Nature Biotechnolgy, 5, 807–813.

    Article  CAS  Google Scholar 

  • Frances, S. P., Sweeney, A. W., & Humber, R. A. (1989). Crypticola clavulifera gen. et sp. nov. and Coelomomyces giganteum: Oomycetes pathogenic for Dipterans infesting leaf axils in an Australian Rainforest. Journal of Invertebrate Pathology, 54, 103–111.

    Article  CAS  PubMed  Google Scholar 

  • Fuxa, J. R., & Richter, A. R. (1992). Virulence and multi generation passage of a nuclear polyhedrosis virus selected for an increased rate of vertical transmission. Biological Control, 2, 171–175.

    Article  Google Scholar 

  • Fuxa, J. R., Richter, A. R., Ameen, A. O., & Hammock, B. D. (2002). Vertical transmission of TnSNPV, TnCPV, AcMNPV, and possibly recombinant NPV in Trichoplusia ni. Journal of Invertebrate Pathology, 79, 44–50.

    Article  CAS  PubMed  Google Scholar 

  • Gani, M., Gupta, R. K., Zargar, S. M., Kour, G., Monobrullah, M., Kandasamy, T., & Mohanasundaram, A. (2017). Molecular identification and phylogenetic analyses of multiple nucleopolyhedrovirus isolated from Lymantria obfuscata (Lepidoptera: Lymantriidae) in India. Applied Entomology and Zoology, 52, 389–399.

    Article  CAS  Google Scholar 

  • Gao, Q., Jin, K., Ying, S. H., Zhang, Y., Xiao, G., Shang, Y., & Wang, C. (2011). Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genetics, 7, e1001264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Maruniak, A., Maruniak, J. E., Zanotto, P. M., Doumbouya, A. E., Liu, J. C., Merritt, T. M., & Lanoie, J. S. (2004). Sequence analysis of the genome of the Neodiprion sertifer nucleopolyhedrovirus. Journal of Virology, 78, 7036–7051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatehouse, J. A. (2008). Biotechnological prospects for engineering insect-resistant plants. Plant Physiology, 146, 881–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatesy, J., Desalle, R., & Whalberg, N. (2007). How many genes should a systematist sample? Conflicting insights from a phylogenomic matrix characterized by replicated incongruence. Systematic Biology, 56, 355–363.

    Article  CAS  PubMed  Google Scholar 

  • Gelernter, W. D., & Federici, B. A. (1986). Isolation, identification, and determination of virulence of a nuclear polyhedrosis virus from the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae). Environmental Entomology, 15, 240–245.

    Article  Google Scholar 

  • Getz, W. M., & Pickering, J. (1983). Epidemic models: Thresholds and population regulation. The American Naturalist, 121, 892.

    Article  Google Scholar 

  • Gladieux, P., Ropars, J., Badouin, H., Branca, A., Aguileta, G., de Vienne, D. M., & Giraud, T. (2014). Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes. Molecular Ecology, 23, 753–773.

    Article  PubMed  Google Scholar 

  • Glare, T. R., & O’Callaghan, M. (2000). Bacillus thuringiensis: biology, ecology and safety. Chichester: Wiley.

    Google Scholar 

  • Goldberg, L. J., & Margalit, J. (1977). A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univittatus, Aedes aegypti and Culex pipiens. Mosquito News, 37, 355–358.

    Google Scholar 

  • González, J. M., Brown, B. J., & Carlton, B. C. (1982). Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus. Proceedings of the National Academy of Sciences, 79(22), 6951–6955.

    Article  Google Scholar 

  • Goorha, R., & Murti, K. G. (1982). The genome of frog virus 3, an animal DNA virus, is circularly permuted and terminally redundant. Proceedings of the National Academy of Sciences, 79, 248–262.

    Article  CAS  Google Scholar 

  • Goulson, D. (2003). Can host susceptibility to baculovirus infection be predicted from host taxonomy or life history? Environmental Entomology, 32, 61–70.

    Article  Google Scholar 

  • Gouy, M., Guindon, S., & Gascuel, O. (2010). SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecualr Biology and Evolution, 27, 221–224.

    Article  CAS  Google Scholar 

  • Gregory, T. R., Nicol, J. A., Tamm, H., Kullman, B., Kullman, K., Leitch, I. J., & Bennett, M. D. (2007). Eukaryotic genome size databases. Nucleic Acids Research, 35, D332–D338.

    Article  CAS  PubMed  Google Scholar 

  • Gröner, A. (1986). Specificity and safety of baculoviruses. In R. R. Granados & B. A. Fedrici (Eds.), The biology of baculoviruses, Vol. I, Biological Properties and Molecular Biology (pp. 177–202). Boca Raton: CRC Press.

    Google Scholar 

  • Gryganskyi, A. P., & Muszewska, A. (2014). Whole genome sequencing and the Zygomycota. Fungal Genomics & Biology, 04, 116.

    Google Scholar 

  • Gryganskyi, A. P., Humber, R. A., Smith, M. E., Miadlikovska, J., Wu, S., Voigt, K., & Vilgalys, R. (2012). Molecular phylogeny of the Entomophthoromycota. Molecular Phylogenetics and Evolution, 65, 682–694.

    Article  PubMed  Google Scholar 

  • Gryganskyi, A. P., Humber, R. A., Smith, M. E., Hodge, K., Huang, B., Voigt, K., & Vilgalys, R. (2013). Phylogenetic lineages in Entomophthoromycota. Persoonia e Molecular Phylogeny and Evolution of Fungi, 30, 94–105.

    Article  CAS  Google Scholar 

  • Guerineau, M., Alexander, B., & Priest, F. G. (1991). Isolation and identification of Bacillus sphaericus strains pathogenic for mosquito larvae. Journal of Invertebrate Pathology, 57, 325–333.

    Article  CAS  PubMed  Google Scholar 

  • Haase, S., Ferrelli, L., Pidre, M. L., & Romanowski, V. (2013). Genetic engineering of baculoviruses. In V. Romanowski (Ed.), Current issues in molecular virology-viral genetics and biotechnological applications (pp. 79–111). Croatia: IntechOpen.

    Google Scholar 

  • Hanekamp, K., Bohnebeck, U., Beszteri, B., & Valentin, K. (2007). PhyloGena—A user-friendly system for automated phylogenetic annotation of unknown sequences. Bioinformatics, 23, 793–801.

    Article  CAS  PubMed  Google Scholar 

  • Harvey, P. H., Brown, A. J. L., Maynard Smith, J., & Nee, S. (1996). New Uses for New Phylogenies (No. 575 N4). New York: Oxford University Press.

    Google Scholar 

  • Hayakawa, T., Ko, R., Okano, K., Seong, S. I., Goto, C., & Maeda, S. (1999). Sequence analysis of the Xestia c-nigrum granulovirus genome. Virology, 262, 277–297.

    Article  CAS  PubMed  Google Scholar 

  • Hazir, S., Stackebrandt, E., Lang, E., Schumann, P., Ehlers, R. U., & Keskin, N. (2004). Two new Subspecies of Photorhabdus luminescens, Isolated from Heterorhabditis bacteriophora (Nematoda: Heterorhabditidae): Photorhabdus luminescens subsp. kayaii subsp. nov. and Photorhabdus luminescens subsp. thracensis subsp. nov. Systematic and Applied Microbiology, 27, 36–42.

    Article  CAS  PubMed  Google Scholar 

  • Hedegaard, J., Søren, A. D. A., Nørskov-Lauritsen, N., Mortensen, K. K., & Sperling-Petersen, H. U. (1999). Identification of Enterobacteriaceae by partial sequencing of the gene encoding translation initiation factor 2. International Journal of Systematic and Evolutionary Microbiology, 49, 1531–1538.

    CAS  Google Scholar 

  • Hedges, R. W. (1972). The pattern of evolutionary change in bacteria. Heredity, 28, 39–48.

    Article  CAS  PubMed  Google Scholar 

  • Held, G. A., Bulla, L. A., Ferrari, E., Hoch, J., Aronson, A. I., & Minnich, S. A. (1982). Cloning and localization of the lepidopteran protoxin gene of Bacillus thuringiensis subsp. kurstaki. Proceedings of the National Academy of Sciences, 79(19), 6065–6069.

    Article  CAS  Google Scholar 

  • Heldens, J. G., van Strien, E. A., Feldmann, A. M., Kulcsár, P., Munoz, D., Leisy, D. J., & Vlak, J. M. (1996). Spodoptera exigua multicapsid nucleopolyhedrovirus deletion mutants generated in cell culture lack virulence in vivo. Journal of General Virology, 77, 3127–3134.

    Article  CAS  PubMed  Google Scholar 

  • Helgason, E., Caugant, D. A., Lecadet, M. M., Chen, Y., Mahillon, J., Lovgren, A., & Kolstø, A. B. (1998). Genetic diversity of Bacillus cereus/B. thuringiensis isolates from natural sources. Current Microbiology, 37, 80–87.

    Article  CAS  PubMed  Google Scholar 

  • Henk, D. A., & Fisher, M. C. (2012). The gut fungus Basidiobolus ranarum has a large genome and different copy numbers of putatively functionally redundant elongation factor genes. PLoS One, 7, 31268.

    Article  CAS  Google Scholar 

  • Hennig, W. (1966). Phylogenetic Systematics. University of Illinois Press, Urbana, IL [Translated by Davis, D.D. and Zangerl, R. from Hennig, W., 1950. Grundzu¨ge einer Theorie der Phylogenetischen Systematik. Deutscher Zentralverlag, Berlin.]

    Google Scholar 

  • Hernandez-Fernandez, J., & Lopez-Pazos, S. A. (2011). Bacillus thuringiensis: Soil microbial insecticide, diversity and their relationship with the entomopathogenic activity. In Soil Microorganisms and Environmental Health (pp. 59–80). Bogotá: Nova Science Publishers.

    Google Scholar 

  • Herniou, E. A., & Jehle, J. A. (2007). Baculovirus phylogeny and evolution. Current Drug Targets, 8, 1043–1050.

    Article  CAS  PubMed  Google Scholar 

  • Herniou, E. A., Luque, T., Chen, X., Vlak, J. M., Winstanley, D., Cory, J. S., & O’Reilly, D. R. (2001). Use of whole genome sequence data to infer baculovirus phylogeny. Journal of Virology, 75, 8117–8126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herniou, E. A., Olszewski, J. A., Cory, J. S., & O’Reilly, D. R. (2003). The genome sequence and evolution of baculoviruses. Annual Review of Entomology, 48, 211–234.

    Article  CAS  PubMed  Google Scholar 

  • Herniou, E. A., Olszewski, J. A., O’reilly, D. R., & Cory, J. S. (2004). Ancient coevolution of baculoviruses and their insect hosts. Journal of Virology, 78, 3244–3251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hibbett, D. S., Binder, M., Bischoff, J. F., Blackwell, M., Cannon, P. F., Eriksson, O. E., & Lumbsch, H. T. (2007). A higher-level phylogenetic classification of the fungi. Mycological research, 111, 509–547.

    Article  PubMed  Google Scholar 

  • Hochberg, M. E. (1991). Extra-host interactions between a braconid endoparasitoid, Apanteles glomeratus, and a baculovirus for larvae of Pieris brassicae. The Journal of Animal Ecology, 60, 65–77.

    Article  Google Scholar 

  • Hostetter, D. L., & Bell, M. R. (1985). Natural dispersal of baculoviruses in the environment. In K. Morsamorosh & K. E. Sherman (Eds.), Viral insecticides for biological control (pp. 249–289). New York: Academic.

    Chapter  Google Scholar 

  • Hostetter, D. L., & Puttler, B. (1991). A new broad host spectrum nuclear polyhedrosis virus isolated from a celery looper, Anagrapha falcifera (Kirby), (Lepidoptera: Noctuidae). Environmental Entomology, 20, 1480–1488.

    Article  Google Scholar 

  • Hu, Z. H., Arif, B. M., Jin, F., Martens, J. W., Chen, X. W., Sun, J. S., & Vlak, J. M. (1998). Distinct gene arrangement in the Buzura suppressaria single-nucleocapsid nucleopolyhedrovirus genome. Journal of General Virology, 79, 2841–2851.

    Article  CAS  PubMed  Google Scholar 

  • Hu, X., Zhang, Y. J., Xiao, G. H., Zheng, P., Xia, Y. L., Zhang, X. Y., & Wang, C. S. (2013). Genome survey uncovers the secrets of sex and lifestyle in caterpillar fungus. Chinese Science Bulletin, 58, 2846–2854.

    Article  CAS  Google Scholar 

  • Hu, X., Xiao, G., Zheng, P., Shang, Y., Su, Y., Zhang, X., & Wang, C. S. (2014). Trajectory and genomic determinants of fungal-pathogen speciation and host adaptation. Proceedings of the National Academy of Sciences of the United States of America, 111, 1679616801.

    Google Scholar 

  • Hughes, A. L., & Friedman, R. (2003). Genome-wide survey for genes horizontally transferred from cellular organisms to baculoviruses. Molecular biology and Evolution, 20, 979–987.

    Article  CAS  PubMed  Google Scholar 

  • Humber, R. A. (1982). Strongwellsea vs. Erynia: The case for a phylogenetic classification of the Entomophthorales (Zygomycetes). Mycotaxonomy, 15, 167–184.

    Google Scholar 

  • Humber, R. A. (2008). Evolution of entomopathogenicity in fungi. Journal of Invertebrate Pathology, 98, 262–266.

    Article  PubMed  Google Scholar 

  • Humber, R. A. (2012). Entomophthoromycota: A new phylum and reclassification for entomophthoroid fungi. Mycotaxonomy, 120, 477–492.

    Article  Google Scholar 

  • Ignoffo, C. M. (1973). Effects of entomopathogens on vertebrates. Annals of the New York Academy of Sciences, 217, 141–164.

    Article  CAS  PubMed  Google Scholar 

  • Ishimori, N. (1934). Contribution a l’etude de la Grasserie du ver a soie. Comptes Rendus des Seances de la Societe de Biologie et de Ses Filiales, 116, 1169–1174.

    Google Scholar 

  • Ivanova, N., Sorokin, A., Anderson, I., Galleron, N., Candelon, B., Kapatral, V., & Chu, L. (2003). Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature, 423(6935), 87.

    Article  CAS  PubMed  Google Scholar 

  • Iwabe, N., Kuma, K. I., Hasegawa, M., Osawa, S., & Miyata, T. (1989). Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proceedings of the National Academy of Sciences, 86(23), 9355–9359.

    Article  CAS  Google Scholar 

  • Jakob, N. J., & Darai, G. (2002). Molecular anatomy of Chilo iridescent virus genome and the evolution of viral genes. Virus Genes, 25, 299–316.

    Article  CAS  PubMed  Google Scholar 

  • Jakob, N. J., MĂĽller, K., Bahr, U., & Darai, G. (2001). Analysis of the first complete DNA sequence of an invertebrate iridovirus: Coding strategy of the genome of Chilo iridescent virus. Virology, 286, 182–196.

    Article  CAS  PubMed  Google Scholar 

  • James, T. Y., Kauff, F., Schoch, C. L., Matheny, P. B., Hofstetter, V., Cox, C. J., & Vilgalys, R. (2006). Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature, 443, 818–822.

    Article  CAS  PubMed  Google Scholar 

  • Jehle, J. A., Fritsch, E., Nickel, A., Huber, J., & Backhaus, H. (1995). TCl4.7: A novel lepidopteran transposon found in Cydia pomonella granulosis virus. Virology, 207, 369–379.

    Article  CAS  PubMed  Google Scholar 

  • Jehle, J. A., Blissard, G. W., Bonning, B. C., Cory, J. S., Herniou, E. A., Rohrmann, G. F., & Vlak, J. M. (2006). On the classification and nomenclature of baculoviruses: A proposal for revision. Archives of virology, 151, 1257–1266.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, V. W., Pearson, J. F., & Jackson, T. A. (2001). Formulation of Serratia entomophila for biological control of grass grub. New Zealand Plant Protection, 54, 125–127.

    Google Scholar 

  • Jun, S. R., Sims, G. E., Wu, G. A., & Kim, S. H. (2010). Whole-proteome phylogeny of prokaryotes by feature frequency profiles: An alignment-free method with optimal feature resolution. Proceedings of the National Academy of Sciences, USA., (107), 133–138.

    Google Scholar 

  • Jurat-Fuentes, J. L., & Jackson, T. A. (2012). Bacterial entomopathogens. In Insect Pathology (2nd ed., pp. 265–349). New York: Elsevier.

    Chapter  Google Scholar 

  • Kauff, F., Cox, C. J., & Lutzoni, F. (2007). WASABI: An automated sequence processing system for multigene phylogenies. Systematic Biology, 56, 523–531.

    Article  CAS  PubMed  Google Scholar 

  • Kaupp, W. J. (1981). Studies of the ecology of the nuclear polyhedrosis virus of the European pine sawfly, Neodiprion sertifer. Ph. D. Thesis, University of Oxford, UK.

    Google Scholar 

  • Kershaw, M. J., Moorhouse, E. R., Bateman, R., Reynolds, S. E., & Charnley, A. K. (1999). The role of destruxins in the pathogenicity of Metarhizium anisopliae for three species of insects. Journal of Invertebrate Pathology, 74, 213–223.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Kirk, P. M., Cannon, P. F., Minter, D. W., & Stalpers, J. A. (2008a). Ainsworth and Bisbys dictionary of the Fungi (p. 771). Wallingford: CABI.

    Book  Google Scholar 

  • Kirk, P. M., Cannon, P. F., Minter, D. W., & Stalpers, J. A. (2008b). Dictionary of the fungi (p. 396). Wallingford: CABI.

    Google Scholar 

  • Kleespies, R. G., Huger, A. M., & Zimmermann, G. (2008). Diseases of insects and other arthropods: Results of diagnostic research over 55 years. Biocontrol Science and Technology, 18, 439–482.

    Article  Google Scholar 

  • Klein, M. G., & Jackson, T. A. (1992). Bacterial diseases of scarabs. In Use of pathogens in scarab management (pp. 43–61). Andover: Intercept Ltd.

    Google Scholar 

  • Kolodny-Hirsch, D. M., Sitchawat, T., Jansiri, T., Chenrchaivachirakul, A., & Ketunuti, U. (1997). Field evaluation of a commercial formulation of the Spodoptera exigua (Lepidoptera: Noctuidae) nuclear polyhedrosis virus for control of beet armyworm on vegetable crops in Thailand. Biocontrol Science and Technology, 7, 475–488.

    Article  Google Scholar 

  • Kool, M., Ahrens, C. H., Vlak, J. M., & Rohrmann, G. F. (1995). Replication of baculovirus DNA. Journal of General Virology, 76, 2103–2118.

    Article  CAS  PubMed  Google Scholar 

  • Krieg, A. V., Huger, A. M., Langenbruch, G. A., & Schnetter, W. (1983). Bacillus thuringiensis var. tenebrionis: ein neuer, gegenĂĽber Larven von Coleopteren wirksamer Pathotyp. Zeitschrift fĂĽr angewandte Entomologie, 96, 500–508.

    Article  Google Scholar 

  • Krych, V. K., Johnson, J. L., & Yousten, A. A. (1980). Deoxyribonucleic acid homologies among strains of Bacillus sphaericus. International Journal of Systematic and Evolutionary Microbiology, 30, 476–484.

    CAS  Google Scholar 

  • Kunst, F., Ogasawara, N., Moszer, I., Albertini, A. M., Alloni, G. O., Azevedo, V., & Borriss, R. (1997). The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature, 390(6657), 249.

    Article  CAS  PubMed  Google Scholar 

  • Lacey, L. A., & Kaya, H. K. (2007). Field manual of techniques in invertebrate pathology: application and evaluation of pathogens for control of insects and other invertebrate pests (2nd ed., p. 813). Dordrecht: Springer.

    Book  Google Scholar 

  • Lacey, L. A., Frutos, R., Kaya, H. K., & Vail, P. (2001). Insect pathogens as biological control agents: Do they have a future? Biological Control, 21, 230–248.

    Article  Google Scholar 

  • Lacey, L. A., Vail, P. V., & Hoffmann, D. F. (2002). Comparative activity of baculoviruses against the codling moth Cydia pomonella and three other tortricid pests of tree fruit. Journal of Invertebrate Pathology, 80, 64–68.

    Article  CAS  PubMed  Google Scholar 

  • Lan, R., & Reeves, P. R. (2000). Intraspecies variation in bacterial genomes: The need for a species genome concept. Trends in Microbiology, 8, 396–401.

    Article  CAS  PubMed  Google Scholar 

  • Lan, R., & Reeves, P. R. (2001). When does a clone deserve a name? A perspective on bacterial species based on population genetics. Trends in Microbiology, 9, 419–424.

    Article  CAS  PubMed  Google Scholar 

  • Land, M., & Miljand, M. (2014). Biological control of mosquitoes using Bacillus thuringiensis israelensis: A pilot study of effects on target organisms, non-target organisms and humans (p. 23). Stockholm: Mistra EviEM.

    Google Scholar 

  • Lang, B. F., O’Kelly, C., Nerad, T., Gray, M. W., & Burger, G. (2002). The closest unicellular relatives of animals. Current Biology, 12, 1773–1778.

    Article  CAS  PubMed  Google Scholar 

  • Lange, M., & Jehle, J. A. (2003). The genome of the Cryptophlebia leucotreta granulovirus. Virology, 317, 220–236.

    Article  CAS  PubMed  Google Scholar 

  • Lange, M., Wang, H., Zhihong, H., & Jehle, J. A. (2004). Towards a molecular identification and classification system of lepidopteran-specific baculoviruses. Virology, 325, 36–47.

    Article  CAS  PubMed  Google Scholar 

  • Langor, D.W. (1995). Satin moth. Nat. Resour. Can., Can. For. Serv., Northwest Reg., North. For. Cent., Edmonton, Alberta. For. Leafl. 35.

    Google Scholar 

  • Lauzon, H. A. M., Lucarotti, C. J., Krell, P. J., Feng, Q., Retnakaran, A., & Arif, B. M. (2004). Sequence and organization of the Neodiprion lecontei nucleopolyhedrovirus genome. Journal of Virology, 78, 7023–7035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lecointre, G., & Le Guyader, H. (2006). The tree of life: A phylogenetic classification (p. 563). Cambridge, MA: Belknap Press.

    Google Scholar 

  • Lerat, E., Daubin, V., & Moran, N. A. (2003). From gene trees to organismal phylogeny in prokaryotes: The case of the Îł-Proteobacteria. PLoS Biology, 1(1), e19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lereclus, D., Delecluse, A., & Lecadet, M. M. (1993). Diversity of Bacillus thuringiensis toxins and genes. In Bacillus thuringiensis, an environmental biopesticide: Theory and practice (pp. 37–69). New York: Wiley.

    Google Scholar 

  • Licht, H. D. F., Hajek, A. E., Eilenberg, J., & Jensen, A. B. (2016). Utilizing genomics to study entomopathogenicity in the fungal phylum Entomophthoromycota: A review of current genetic resources. In Advances in Genetics (Vol. 94, pp. 41–65). San Diego: Academic.

    Google Scholar 

  • Lin, J. (1991). Divergence measures based on the Shannon entropy. IEEE Transactions on Information Theory, 37, 145–151.

    Article  Google Scholar 

  • Lipa, J., Ziemnicka, J., & Gudz-Gorban, A. (1971). Electron microscopy of nuclear polyhedrosis virus from Agrotis segetum Schiff. and A. exclamationis L. (Lepidoptera, Noctuidae). Acta Microbiologica Polonica, 3, 55–61.

    CAS  Google Scholar 

  • Lord, J. C. (2005). From Metchnikoff to Monsanto and beyond: The path of microbial control. Journal of invertebrate pathology, 89, 19–29.

    Article  PubMed  Google Scholar 

  • Lucarotti, C. J., & Klein, M. B. (1988). Pathology of Coelomomyces stegomyiae in adult Aedes aegypti ovaries. Canadian journal of botany, 66, 877–884.

    Article  Google Scholar 

  • Lucarotti, C. J., & Shoulkamy, M. A. (2000). Coelomomyces stegomyiae infection in adult female Aedes aegypti following the first, second, and third host blood meals. Journal of Invertebrate Pathology, 75, 292–295.

    Article  CAS  PubMed  Google Scholar 

  • Lucking, R., Huhndorf, S., Pfister, D. H., Plata, E. R., & Lumbsch, H. T. (2009). Fungi evolved right on track. Mycologia, 101, 810–822.

    Article  PubMed  Google Scholar 

  • Maestri, A. (1856). Del giallume. In Frammenti Anatomici Fisiologici e Patologici sul baco da seta (pp. 117–120). Pavia: Fusi.

    Google Scholar 

  • Manonmani, A., & Balaraman, K. (2001). A highly mosquitocidal Bacillus thuringiensis var. thompsoni. Current Science, 80, 779–781.

    CAS  Google Scholar 

  • Martens, P. P. C., Crook, N. E., Rubinstein, R., Pedley, S., & Payne, C. C. (1989). Cytoplasmic polyhedrosis virus classification by electropherotype: Validation by sereological analyses and agarose gel electrophoresis. Journal of General Virology, 70, 173–185.

    Article  Google Scholar 

  • Martin, P. A., Farrar, R. R., Jr., & Blackburn, M. B. (2009). Survival of diverse Bacillus thuringiensis strains in gypsy moth (Lepidoptera: Lymantriidae) is correlated with urease production. Biological Control, 51, 147–151.

    Article  CAS  Google Scholar 

  • Martin, P. A., Gundersen-Rindal, D. E., & Blackburn, M. B. (2010). Distribution of phenotypes among Bacillus thuringiensis strains. Systematic and Applied Microbiology, 33, 204–208.

    Article  CAS  PubMed  Google Scholar 

  • Mertens, P. P. C., & Bamford, D. H. (2009). The RNAs and proteins of dsRNA viruses. Available: http://www.reoviridae.org/dsRNA_virus_proteins/

  • Miller, L. K. (1988). Baculoviruses as gene expression vectors. Annual Reviews in Microbiology, 42, 177–199.

    Article  CAS  Google Scholar 

  • Monobrullah, M. (2003). Optical brighteners–Pathogenicity enhancers of entomopathogenic viruses. Current Science, 84, 640–645.

    CAS  Google Scholar 

  • Montague, M. G., & Hutchison, C. A. (2000). Gene content phylogeny of herpesviruses. Proceedings of the National Academy of Sciences, 97(10), 5334–5339.

    Article  CAS  Google Scholar 

  • Moscardi, F. (1999). Assessment of the application of baculoviruses for control of Lepidoptera. Annual Review of Entomology, 44, 257–289.

    Article  CAS  PubMed  Google Scholar 

  • Moscardi, F., & Santos, B. (2005). Producao comercial de nucleopoliedrosis de Anticarsia gemmatalis HUBNER (Lep: Noctuidae) em laboratorio. In Proceedings of the IX Simposio de Controle Biologico. Brazil7 Recife. 42p.

    Google Scholar 

  • Moya, A., Pereto, J., Gil, R., & Latorre, A. (2008). Learning how to live together: Genomic insights into prokaryote–animal symbioses. Nature Review Genetics, 9, 218–229.

    Article  CAS  Google Scholar 

  • Mueller, G. M., & Schmit, J. P. (2007). Fungal biodiversity: What do we know? What can we predict. Biodiversity and conservation, 16, 1–5.

    Article  Google Scholar 

  • Mueller, U. G., Gerardo, N. M., Aanen, D. K., Six, D. L., & Schultz, T. R. (2005). The evolution of agriculture in insects. Annual Review of Ecology and Systematic, 36, 563–595.

    Article  Google Scholar 

  • Muller, O. F. (1773). Verminum Terrestrium et Fluviatilium. Hauniae et Lipsiae, Heineck et Faber. Nature Review Genetics, 9, 218–229.

    Google Scholar 

  • Muñoz, D., Castillejo, J. I., & Caballero, P. (1998). Naturally occurring deletion mutants are parasitic genotypes in a wild-type nucleopolyhedrovirus population of Spodoptera exigua. Applied and Environmental Microbiology, 64, 4372–4377.

    PubMed  PubMed Central  Google Scholar 

  • Murrin, F., Holtby, J., Noland, R. A., & Davidson, W. S. (1986). The genome of Entomophaga aulicae (Entomophthorales, Zygomycetes): Base composition and size. Experimental Mycology, 10, 67–75.

    Article  CAS  Google Scholar 

  • Myers, J. H. (1988). Can a general hypothesis explain population cycles of forest Lepidoptera? Advances in Ecological Research, 18, 179–242. Academic.

    Article  Google Scholar 

  • Nguyen, T. T., Suryamohan, K., Kuriakose, B., Janakiraman, V., Reichelt, M., Chaudhuri, S., Guillory, J., Divakaran, N., Rabins, P. E., Goel, R., Deka, B., Sarkar, S., Ekka, P., Tsai, Y., Vargas, D., Santhosh, S., Mohan, S., Chin, C., Korlach, J., Thomas, G., Babu, A., & Seshagiri, S. (2018). Comprehensive analysis of single molecule sequencing-derived complete genome and whole transcriptome of Hyposidra talaca nuclear polyhedrosis virus. Scientific reports, 8, 8924.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nicolas, L., Dossou-Yovo, J., & Hougard, J. M. (1987). Persistence and recycling of Bacillus sphaericus 2362 spores in Culex quinquefasciatus breeding sites in West Africa. Applied Microbiology and Biotechnology, 25, 341–345.

    Article  Google Scholar 

  • Nielsen-LeRoux, C., Gaudriault, S., Ramarao, N., Lereclus, D., & Givaudan, A. (2012). How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts. Current Opinion in Microbiology, 15, 220–231.

    Article  PubMed  Google Scholar 

  • Ochman, H., Lawrence, J. G., & Groisman, E. A. (2000). Lateral gene transfer and the nature of bacterial innovation. Nature, 405(6784), 299.

    Article  CAS  PubMed  Google Scholar 

  • Onstad, D. W., Fuxa, J. R., Humber, R. A., Oestergaard, J., Shapiro-Ilan, D. I., Gouli, V. V., Anderson, R. S., Andreadis, T. G., & Lacey, L. A. (2006). An Abridged glossary of terms used in invertebrate pathology (3rd ed.). Society for Invertebrate Pathology. http://www.sipweb.org/glossary

  • Paillot, A. (1926). Comptes rendus de l’AcadĂ©mie des Sciences. Paris, 182, 180–182.

    Google Scholar 

  • Pattemore, J. A., Hane, J. K., Williams, A. H., Wilson, B. A., Stodart, B. J., & Ash, G. J. (2014). The genome sequence of the biocontrol fungus Metarhizium anisopliae and comparative genomics of Metarhizium species. BMC Genomics, 15, 660.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paul, S., Paul, B., Khan, M. A., Aggarwal, C., Rathi, M. S., & Tyagi, S. P. (2017). Characterization and evaluation of Bacillus thuringiensis var. kurstaki based formulation for field persistence and insect biocontrol. Indian Journal of Agricultural Sciences, 87, 473–478.

    Google Scholar 

  • Peplies, J., Kottmann, R., Ludwig, W., & Glo¨ckner, F. O. (2008). A standard operating procedure for phylogenetic inference (SOPPI) using (rRNA) marker genes. Systematic Applied Microbiology, 31, 251–257.

    Article  CAS  PubMed  Google Scholar 

  • Pijlman, G. P., van den Born, E., Martens, D. E., & Vlak, J. M. (2001). Autographa californica baculoviruses with large genomic deletions are rapidly generated in infected insect cells. Virology, 283, 132–138.

    Article  CAS  PubMed  Google Scholar 

  • Poinar, G. O., & Thomas, G. M. (1982). An entomophthoralean fungus from Dominican amber. Mycologia, 74, 332–334.

    Article  Google Scholar 

  • Prasertphon, S., & Tanada, Y. (1968). The formation and circulation, in Galleria, of hyphal bodies of entomophtoraceous fungi. Journal of Invertebrate Pathology, 11, 260–280.

    Article  Google Scholar 

  • Prater, C. A., Redmond, C. T., Barney, W., Bonning, B. C., & Potter, D. A. (2006). Microbial control of black cutworm (Lepidoptera: Noctuidae) in turfgrass using Agrotis ipsilon multiple nucleopolyhedrovirus. Journal of Economic Entomology, 99, 1129–1137.

    Article  PubMed  Google Scholar 

  • Priest, F. G., Kaji, D. A., Rosato, Y. B., & Canhos, V. P. (1994). Characterization of Bacillus thuringiensis and related bacteria by ribosomal RNA gene restriction fragment length polymorphisms. Microbiology, 140, 1015–1022.

    Article  CAS  PubMed  Google Scholar 

  • Priest, F. G., Barker, M., Baillie, L. W., Holmes, E. C., & Maiden, M. C. (2004). Population structure and evolution of the Bacillus cereus group. Journal of Bacteriology, 186, 7959–7970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin, X., Evans, J. D., Aronstein, K. A., Murray, K. D., & Weinstock, G. M. (2006). Genome sequences of the honey bee pathogens Paenibacillus larvae and Ascosphaera apis. Insect Molecular Biology, 15, 715–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raffaele, S., & Kamoun, S. (2012). Genome evolution in filamentous plant pathogens: Why bigger can be better. Nature Review Microbiology, 10, 417–430.

    Article  CAS  Google Scholar 

  • Rasko, D. A., Altherr, M. R., Han, C. S., & Ravel, J. (2005). Genomics of the Bacillus cereus group of organisms. FEMS Microbiology Reviews, 29, 303–329.

    CAS  PubMed  Google Scholar 

  • RĂ©gnière, J. (1984). Vertical transmission of diseases and population dynamics of insects with discrete generations: A model. Journal of Theoretical Biology, 107, 287–301.

    Article  Google Scholar 

  • Rey, M. W., Ramaiya, P., Nelson, B. A., Brody-Karpin, S. D., Zaretsky, E. J., Tang, M., & Olsen, P. B. (2004). Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biology, 5(10), R77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Riddle, L. W. (1906). On the cytology of the Entomophthoraceae. Proceedings of the American Academy of Arts and Sciences, 42, 177–198.

    Article  Google Scholar 

  • Roberts, D. W., & St. Leger, R. J. (2004). Metarhizium spp., cosmopolitan insect-pathogenic fungi: Mycological aspects. Advances in Applied Microbiology, 54, 1–70.

    Article  CAS  PubMed  Google Scholar 

  • Rohrmann, G. F. (1986). Polyhedrin structure. Journal of General Virology, 67, 1499–1513.

    Article  CAS  PubMed  Google Scholar 

  • Rohrmann, G. F., Pearson, M. N., Bailey, T. J., Becker, R. R., & Beaudreau, G. S. (1981). N-terminal polyhedrin sequences and occluded Baculovirus evolution. Journal of Molecular Evolution, 17, 329–333.

    Article  CAS  PubMed  Google Scholar 

  • Roy, H. E., Steinkraus, D. C., Eilenberg, J., Hajek, A. E., & Pell, J. K. (2006). Bizarre interactions and endgames: Entomopathogenic fungi and their arthropod hosts. Annual Review of Entomology, 51, 331–357.

    Article  CAS  PubMed  Google Scholar 

  • Saker, M., Salama, H. S., Ragaei, M., & Abd El-Ghany, N. M. (2012). Molecular characterisation of Bacillus thuringiensis isolates from the Egyptian soils. Archives of Phytopathology and Plant Protection, 45, 110–125.

    Article  CAS  Google Scholar 

  • Sapp, J. (2009). The new foundations of evolution: On the tree of life (p. 424). New York: Oxford University Press.

    Google Scholar 

  • Sarkar, I. N., Egan, M. G., Coruzzi, G., Lee, E. K., & DeSalle, R. (2008). Automated simultaneous analysis phylogenetics (ASAP): An enabling tool for phylogenomics. BMC Bioinformatics, 9, 103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saunders, G. A., Washburn, J. O., Egerter, D. E., & Anderson, J. R. (1988). Pathogenicity of fungi isolated from field-collected larvae of the western treehole mosquito, Aedes sierrensis (Diptera: Culicidae). Journal of Invertebrate Pathology, 52, 360–363.

    Article  CAS  PubMed  Google Scholar 

  • Sawyer, W. H. (1933). The development of Entomophthora sphaerosperma upon Rhopobota vacciniana. Annals of Botany, 47, 799–809.

    Article  Google Scholar 

  • Saxena, H. (2008). Microbial management of crop pest. Journal of Biopesticides, 1, 32–37.

    Google Scholar 

  • Scholte, E. J., Knols, B. G. J., Samson, R. A., & Takken, W. (2004). Entomopathogenic fungi for mosquito control: A review. Journal of Insect Science, 4, 19–24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Seeley, T. D., & Tarpy, D. R. (2007). Queen promiscuity lowers disease within honeybee colonies. Proceedings of the Royal Society of London B-Biological Sciences, 274, 67–72.

    Article  Google Scholar 

  • Selander, R. K., Musser, J. M., Caugant, D. A., Gilmour, M. N., & Whittam, T. S. (1987). Population genetics of pathogenic bacteria. Microbial Pathogenesis, 3, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Shalchian-Tabrizi, K., Minge, M. A., Espelund, M., Orr, R., Ruden, T., Jakobsen, K. S., & Cavalier-Smith, T. (2008). Multigene phylogeny of choanozoa and the origin of animals. PLoS One, 3(5), 2098.

    Article  CAS  Google Scholar 

  • Shang, Y., Feng, P., & Wang, C. (2015). Fungi that infect insects: Altering host behavior and beyond. PLoS Pathogens, 11, e1005037.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shantibala, T., Fraser, M. J., Luikham, R., Devi, Y. R., Devi, K. M., Lokeshwari, R. K., Terenius, O., & Ponnuvel, K. M. (2018). Genetic characterization of an alphabaculovirus causing tiger band disease in the oak tasar silkworm. Antheraea proylei J (Lepidoptera: Saturniidae). Sericologia, 58, 91–111.

    Google Scholar 

  • Shida, O., Takagi, H., Kadowaki, K., Yano, H., & Komagata, K. (1996). Differentiation of species in the Bacillus brevis group and the Bacillus aneurinolyticus group based on the electrophoretic whole-cell protein pattern. Antonie Van Leeuwenhoek, 70, 31–39.

    Article  CAS  PubMed  Google Scholar 

  • SimĂłn, O., Williams, T., LĂłpez-Ferber, M., & Caballero, P. (2004). Genetic structure of a Spodoptera frugiperda nucleopolyhedrovirus population: High prevalence of deletion genotypes. Applied and Environmental Microbiology, 70, 5579–5588.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sims, G. E., Jun, S. R., Wu, G. A., & Kim, S. H. (2009). Alignment-free genome comparison with feature frequency profiles (FFP) and optimal resolutions. Proceedings of the National Academy of Sciences, U S A, 106, 2677–2682.

    Article  CAS  Google Scholar 

  • Smith, R. A., & Barry, J. W. (1998). Environmental persistence of Bacillus thuringiensis spores following aerial application. Journal of Invertebrate Pathology, 71, 263–267.

    Article  CAS  PubMed  Google Scholar 

  • Smith, R. A., & Couche, G. A. (1991). The phylloplane as a source of Bacillus thuringiensis variants. Applied and Environmental Microbiology, 57, 311–315.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smits, P. H., & Vlak, J. M. (1988). Biological activity of Spodoptera exigua nuclear polyhedrosis virus against S. exigua larvae. Journal of Invertebrate Pathology, 51, 107–114.

    Article  Google Scholar 

  • Song, J., Wang, R., Deng, F., Wang, H., & Hu, Z. (2008). Functional studies of per os infectivity factors of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus. Journal of General Virology, 89, 2331–2338.

    Article  CAS  PubMed  Google Scholar 

  • Spatafora, J. W., Sung, G. H., Sung, J. M., Hywel-Jones, N. L., & White, J. F. (2007). Phylogenetic evidence for an animal pathogen origin of ergot and grass endophytes. Molecular Ecology, 16, 1701–1711.

    Article  CAS  PubMed  Google Scholar 

  • St. Leger, R. J., & Wang, C. (2010). Genetic engineering of fungal biocontrol agents to achieve efficacy against insect pests. Applied Microbiology and Biotechnology, 85, 901–907.

    Article  CAS  PubMed  Google Scholar 

  • Staats, C. C., Junges, A., Guedes, R. L., Thompson, C. E., de Morais, G. L., Boldo, J. T., & Schrank, A. (2014). Comparative genome analysis of entomopathogenic fungi reveals a complex set of secreted proteins. BMC Genomics, 15, 822.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stackebrandt, E., Frederiksen, W., Garrity, G. M., Grimont, P. A., Kämpfer, P., Maiden, M. C., & Vauterin, L. (2002). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. International Journal of Systematic and Evolutionary Microbiology, 52, 1043–1047.

    CAS  PubMed  Google Scholar 

  • Stahly, D. P., & Klein, M. G. (1992). Problems with in vitro production of spores of Bacillus popilliae for use in biological control of the Japanese beetle. Journal of Invertebrate Pathology, 60, 283–291.

    Article  Google Scholar 

  • Stahly, D. P., Andrews, R. E., & Yousten, A. A. (2006). The genus Bacillus – Insect pathogens. Prokaryotes, 4, 563–608.

    Article  Google Scholar 

  • Steinhaus, E. A. (1956a). Potentialities for microbial control of insects. Agriculture Food Chemistry, 4(676), 80.

    Google Scholar 

  • Steinhaus, H. (1956b). Sur la division des corp materiels en parties. Bulletin of the Polish Academy of Sciences, 1(804), 801.

    Google Scholar 

  • Steinhaus, E. A. (1975). Disease in a minor chord: Being a semi historical and semibiographical account of a period in science when one could be happily yet seriously concerned with the diseases of lowly animals without backbones, especially the insects. The Ohio State University Press.

    Google Scholar 

  • Suh, S. O., Noda, H., & Blackwell, M. (2001). Insect symbiosis: Derivation of yeast-like endosymbionts within an entomopathogenic filamentous lineage. Molecular Biology and Evolution, 18, 995–1000.

    Article  CAS  PubMed  Google Scholar 

  • Suh, S. O., McHugh, J. V., Pollock, D. D., & Blackwell, M. (2005). The beetle gut: A hyperdiverse source of novel yeasts. Mycological Research, 109, 261–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, N. C., & Bowen, C. C. (1972). Ultrastructural studies of nuclear division in Basidiobolus ranarum Eidam. Caryologia, 25, 471–494.

    Article  Google Scholar 

  • Sung, G. H., Hywel-Jones, N. L., Sung, J. M., Luangsa-ard, J. J., Shrestha, B., & Spatafora, J. W. (2007). Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Studies in Mycology, 57, 5–59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sung, G. H., Poinar, G. O., Jr., & Spatafora, J. W. (2008). The oldest fossil evidence of animal parasitism by fungi supports a Cretaceous diversification of fungal-arthropod symbioses. Molecular Phylogenetics and Evolution, 49, 495–502.

    Article  PubMed  Google Scholar 

  • Szewczyk, B., Barski, P., Sihler, W., Rabalski, L., Skrzecz, I., Hoyos-Carvajal, L., & de Souza, M. L. (2008). Detection and identification of baculovirus pesticides by multitemperature single-strand conformational polymorphism. Journal of Environmental Science and Health Part B, 43, 539–545.

    Article  CAS  Google Scholar 

  • Tanada, Y., & Kaya, H. K. (1993). Insect Pathology. San Diego: Academic.

    Google Scholar 

  • Tanzini, M., Alves, S., Setten, A., & Augusto, N. (2001). Compatibilidad de agent estensoactivos com Beauveria bassiana y Metarhizium anisopliae. Manejo Integrado de Plagas, 59, 15–18.

    Google Scholar 

  • Tao, A., Pang, F., Huang, S., Yu, G., Li, B., & Wang, T. (2014). Characterisation of endophytic Bacillus thuringiensis strains isolated from wheat plants as biocontrol agents against wheat flag smut. Biocontrol Science and Technology, 24, 901–924.

    Article  Google Scholar 

  • Tarpy, D. F., & Seeley, T. D. (2006). Lower disease infection in honeybee (Apis mellifera) colonies headed by polyandrous vs. monandrous queens. Naturwissenschaften, 93, 195–199.

    Article  CAS  PubMed  Google Scholar 

  • Theilmann, D. A. (2005). Family baculoviridae. Virus taxonomy. Eighth report of the international committee on taxonomy of viruses pp. 1259.

    Google Scholar 

  • Tilquin, M., Paris, M., Reynaud, S., Despres, L., Ravanel, P., Geremia, R. A., & Gury, J. (2008). Long lasting persistence of Bacillus thuringiensis subsp. israelensis (Bti) in mosquito natural habitats. PLoS One, 3(10), e3432.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Beek, N. A., & Hughes, P. R. (1998). The response time of insect larvae infected with recombinant baculoviruses. Journal of Invertebrate Pathology, 72, 338–347.

    Article  PubMed  Google Scholar 

  • Van Oers, M. M., & Vlak, J. M. (2007). Baculovirus genomics. Current Drug Targets, 8, 1051–1068.

    Article  PubMed  Google Scholar 

  • Van Regenmortel, M. H., Fauquet, C. M., Bishop, D. H., Carstens, E. B., Estes, M. K., Lemon, S. M., & Wickner, R. B. (2000). Virus taxonomy: Classification and nomenclature of viruses. Seventh report of the International Committee on Taxonomy of Viruses (p. 1162). San Diego: Academic.

    Google Scholar 

  • Vasconcelos, S. D., Cory, J. S., Wilson, K. R., Sait, S. M., & Hails, R. S. (1996). Modified behavior in baculovirus-infected lepidopteran larvae and its impact on the spatial distribution of inoculum. Biological Control, 7, 299–306.

    Article  Google Scholar 

  • Vega, F. E., Goettel, M. S., Blackwell, M., Chandler, D., Jackson, M. A., Keller, S., & Pell, J. K. (2009). Fungal entomopathogens: New insights on their ecology. Fungal Ecology, 2, 149–159.

    Article  Google Scholar 

  • Vezina, A., & Peterman, R. (1985). Tests of the role of nuclear polyhedrosis virus in the population dynamics of its host, Douglas-fir tussock moth, Orgyia pseudotsugata (Lepidoptera: Lymantriidae). Oecologia, 67, 260–266.

    Article  PubMed  Google Scholar 

  • Vidal-Quist, J. C., Rogers, H. J., Mahenthiralingam, E., & Berry, C. (2013). Bacillus thuringiensis colonises plant roots in a phylogeny-dependent manner. FEMS Microbiology Ecology, 86, 474–489.

    Article  CAS  PubMed  Google Scholar 

  • Vilcinskas, A. (2010). Coevolution between pathogen-derived proteinases and proteinase inhibitors of host insects. Virulence, 1, 206–214.

    Article  PubMed  Google Scholar 

  • Vodovar, N., Vallenet, D., Cruveiller, S., Rouy, Z., Barbe, V., Acosta, C., & Vacherie, B. (2006). Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nature Biotechnology, 24, 673.

    Article  CAS  PubMed  Google Scholar 

  • Wang, A., & Ash, G. J. (2015). Whole genome phylogeny of Bacillus by feature frequency profiles (FFP). Scientific reports, 5, 13644.

    Article  PubMed Central  Google Scholar 

  • Wang, C. S., & St. Leger, R. J. (2014). Genomics of entomopathogenic fungi. In F. Martin (Ed.), The ecological genomics of fungi (pp. 243–260). Hoboken: Wiley.

    Google Scholar 

  • Wang, D. Y. C., Kumar, S., & Hedges, S. B. (1999). Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proceedings of the Royal Society of London B, 266, 163–171.

    Article  CAS  Google Scholar 

  • Ward, V. K., & Kalmakoff, J. (1991). Invertebrate lridoviridae. In E. Kurstak (Ed.), Viruses of Invertebrates (pp. 197–226). New York: Marcel Dekker.

    Google Scholar 

  • Waterfield, N. R., Bowen, D. J., Fetherston, J. D., & Perry, R. D. (2001). The tc genes of Photorhabdus: A growing family. Trends in Microbiology, 9, 185–191.

    Article  CAS  PubMed  Google Scholar 

  • Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., & Starr, M. P. (1987). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. International Journal of Systematic and Evolutionary Microbiology, 37, 463–464.

    Article  Google Scholar 

  • Weiser, J. (1987). Patterns over place and time. In J. R. Fuxa & Y. Tanada (Eds.), Epizootiology of insect disease (pp. 215–242). New York: Wiley.

    Google Scholar 

  • Wennmann, J. T., Keilwagen, J., & Jehle, J. A. (2018). Baculovirus Kimura two-parameter species demarcation criterion is confirmed by the distances of 38 core gene nucleotide sequences. Journal of General Virology, 99, 1–14. https://doi.org/10.1099/jgv.0.001100.

    Article  CAS  Google Scholar 

  • Westenberg, M., Wang, H., IJkel, W. F., Goldbach, R. W., Vlak, J. M., & Zuidema, D. (2002). Furin is involved in baculovirus envelope fusion protein activation. Journal of Virology, 76, 178–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (World Health Organization). (1999). International programme on chemical safety, (IPCS). Geneva: WHO.

    Google Scholar 

  • Wilcox, D. R., Shivakumar, A. G., & Melin, B. E. (1986). Genetic engineering of bioinsecticides. In M. Inouye & R. Sarma (Eds.), Protein engineering applications in science, Medicine, and Industry (1st ed., pp. 395–412). Orlando: Academic.

    Google Scholar 

  • Winstanley, D., & O’Reilly, D. (1999). Baculoviruses (Baculoviridae)| Granuloviruses (pp. 140–146). San Diego: Academic.

    Google Scholar 

  • Wormleaton, S. L., & Winstanley, D. (2001). Phylogenetic analysis of conserved genes within the ecdysteroid UDP-glucosyltransferase gene region of the slow-killing Adoxophyes orana granulovirus. Journal of General Virology, 82, 2295–2305.

    Article  CAS  PubMed  Google Scholar 

  • Wormleaton, S., Kuzio, J., & Winstanley, D. (2003). The complete sequence of the Adoxophyes orana granulovirus genome. Virology, 311, 350–365.

    Article  CAS  PubMed  Google Scholar 

  • Wu, D., & Chang, F. N. (1985). Synergism in mosquitocidal activity of 26 and 65 kDa proteins from Bacillus thuringiensis subsp. israelensis crystal. FEBS Letters, 190, 232–236.

    Article  CAS  Google Scholar 

  • Wu, M., & Eisen, J. A. (2008). A simple, fast, and accurate method of phylogenomic inference. Genome Biology, 9, R151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao, G. H., Ying, S.-H., Zheng, Z., Wang, Z. L., Zhang, S., Xie, X. Q., & Feng, M. G. (2012). Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Scientific Reports, 2, 483.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zanotto, P. M. D. A., Kessng, B. D., & Maruniak, J. E. (1993). Phylogenetic lnterrelationships among Baculoviruses: Evolutionary. Journal of Invertebrate Pathology, 62, 147–164.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, G., Sun, X., Zhang, Z., Zhang, Z., & Wan, F. (1995). Production and effectiveness of the new formulation of heliothis virus (NPV) pesticide- Emulsifiable suspension. Virologica Sinica, 10, 242–247.

    Google Scholar 

  • Zheng, P., Xia, Y., Xiao, G., Xiong, C., Hu, X., Zhang, S., & Wang, C. (2011). Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biology, 12, R116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mudasir Gani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gani, M., Hassan, T., Saini, P., Gupta, R.K., Bali, K. (2019). Molecular Phylogeny of Entomopathogens. In: Khan, M., Ahmad, W. (eds) Microbes for Sustainable Insect Pest Management . Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-23045-6_3

Download citation

Publish with us

Policies and ethics