Skip to main content

Entomopathogen and Synthetic Chemical Insecticide: Synergist and Antagonist

  • Chapter
  • First Online:
Microbes for Sustainable Insect Pest Management

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP))

  • 598 Accesses

Abstract

The use of synthetic insecticides and biological agents are the main tools to control agricultural pests, each with its own advantages and disadvantages. Although the use of chemical compounds is inevitable in some cases, attitudes of consumers and agricultural experts towards healthy products and lower environmental contamination have increased the prevalence and preference for biological agents. Among them, insect pathogens have been considered as the unique and widely distributed components in many ecosystems, due to their diverse virulent mechanisms. The entomopathogenic fungi (EF) and nematodes have been commercialized as biologically active insecticides against a wide range of pests. Although many environmental benefits for these compounds have been identified, the disadvantages such as low virulence due to behavior or habitat of target pest, delayed killing performance and sensitivity to environmental factors, lead to simultaneous use of entomopathogens with one or more chemical insecticides in reduced doses. In this review, the possibility of simultaneous use of chemical insecticides from different classes with EF and nematodes were discussed by indicating severally up-to-date studies. The effects of insecticides on cessation or induction of germination and conidiation of fungi have been reported, depending on the concentrations of used chemicals. Field or laboratory experiments have shown synergism or antagonism of EF with some insecticides. In case of entomopathogenic nematodes, the effects of insecticides from different classes have been investigated on mobility and survival of nematodes, as well as on synergistic or additive effects. Generally, the possibility of simultaneous use of chemical insecticides with these two groups of entomopathogens depends on target pest, spraying method, insecticide class or formulation and origin of entomopathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali, S., Zhang, C., Wang, Z., Wang, X., Wu, M., H, J., Cuthbertson, A. G. S., Shao, Z., & Qiu, B. L. (2017). Toxicological and biochemical basis of synergism between the entomopathogenic fungus Lecanicillium muscarium and the insecticide matrine against Bemisia tabaci (Gennadius). Scientific Reports, 7, 46558. https://doi.org/10.1038/srep46558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves, S. B. (1998). Fungos entomopatogênicos. In S. B. Alves (Ed.), Controle microbiano de insetos (2nd ed., pp. 289–381). Piracicaba: Fundação de Estudos Agrários Luiz de Queiroz (FEALQ).

    Google Scholar 

  • Anderson, T. E., Hajek, A. E., Roberts, D. W., Preisler, H. K., & Robertson, J. L. (1989). Colorado potato beetle (Coleoptera: Chrysomelidae): Effects of combinations of Beauveria bassiana with insecticides. Journal of Economic Entomology, 82, 83–89.

    Article  CAS  Google Scholar 

  • Antonio, B. F., Almeida, J. E. M., & Clovis, L. (2001). Effect of thiamethozam on entomopathogenic microorganisms. Neotropical Entomology, 30, 437–447.

    Article  Google Scholar 

  • Araujo, J. P. M., & Hughes, D. P. (2016). Diversity of entomopathogenic fungi: Which groups conquered the insect body? Advances in Genetics, 94, 1–39.

    Article  CAS  Google Scholar 

  • Archana, M. R., & Ramaswamy, K. (2012). Interactive effect of entomopathogenic fungi, Paecilomyces fumosoroseus with few organophosphate and pyrethroid pesticides: An In vitro study. Indian Journal of Fundamental and Applied Life Sciences, 2, 10–17.

    Google Scholar 

  • Asi, M. R., Bashiri, M. H., Afzal, M., Ashfaq, M., & Sahi, S. T. (2010). Compatibility of entomopathogenic fungi, Metarhizium anisopliae and Paecilomyces fumosoroseus with selective insecticides. Pakistan Journal of Botany, 42, 4207–4214.

    Google Scholar 

  • Baweja, V., & Sehgal, S. S. (1997). Potential of Heterorhabditis bacteriophora Poinar (Nematoda, Heterorhabditidae) in parasitizing Spodoptera litura Fabricius in response to malathion treatment. Acta Parasitologica, 42, 168–172.

    CAS  Google Scholar 

  • Bortoluzzi, L., Alves, L. F. A., Alves, V. S., & Holz, N. (2013). Entomopathogenic nematodes and their interaction with chemical insecticide aiming at the control of banana weevil borer, Cosmopolites sordidus Germar (Coleoptera: Curculionidae). Arquivos do Instituto Biologico di Sao Paolo, 80, 183–192.

    Article  Google Scholar 

  • Brown, J. Z., Steinkraus, D. C., & Tugwell, N. P. (1997, January 6–10). The effects and persistence of the fungus Beauveria bassiana (Mycotrol) and imidacloprid (Provado) on tarnished plant bug mortality and feeding, pp. 1302Ð1305. In: Proceedings of the Beltwide Cotton Conference, New Orleans, LA, National Cotton Council, Memphis, TN

    Google Scholar 

  • Brownbridge, M., Costa, S., & Jaronski, S. T. (2001). Effects of in vitro passage of Beauveria bassiana on virulence to Bemisia argentifolii. Journal of Invertebrate Pathology, 77, 280–283.

    Article  CAS  Google Scholar 

  • Chandler, D., Bailey, A., Tatchell, G. M., Davidson, G., Greeves, J., & Grant, W. (2011). The development, regulation and use of biopesticides for Integrated Pest Management. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 1987–1998.

    Article  Google Scholar 

  • Cuthbertson, A. G. S., & Collins, D. A. (2015). Tri-Tek (petroleum horticultural oil) and Beauveria bassiana: Use in eradication strategies for Bemisia tabaci Mediterranean species in UK glasshouses. Insects, 6, 133–140.

    Article  Google Scholar 

  • da Silva, R. A., Quintela, E. D., Mascarin, G. M., Barrigossi, J. A. F., & Lião, L. M. (2013). Compatibility of conventional agrochemicals used in rice crops with the entomopathogenic fungus Metarhizium anisopliae. Scientia Agricola, 70, 152–160.

    Article  Google Scholar 

  • DeBach, P. (1974). Biological control by natural enemies (p. 323). Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Dowds, B. C. A., & Peters, A. (2002). Virulence mechanisms. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 79–98). Wallingford: CABI Press.

    Chapter  Google Scholar 

  • Fargues, J. (1973). Sensibilite des larves de Leptinotarsa decemlineata Say (Col., Chrysomelidae) a Beauveria bassiana Yuil. (Fungi imperfecti, Moniliales) en presence de doses reduites d’insecticide. Annals of Zoology and Ecology of Animals, 5, 231–246.

    Google Scholar 

  • Fargues, J. (1975). Etude experimentale dans la nature de I’utilisation combinee de Beauveria bassiana et d’insecticides a dose reduite contre Leptinotarsa decemlineata. Annals of Zoology and Ecology of Animals, 7, 247–264.

    CAS  Google Scholar 

  • Firouzbakht, H., Zibaee, A., Hoda, H., & Sohani, M. M. (2015). Virulence determination of Beauveria bassiana isolates on a predatory Hemipteran, Andrallus spinidens Fabricius (Hemiptera: Pentatomidae). Acta Phytopathol Entomol Hungarica, 50, 115–126.

    Article  Google Scholar 

  • Goettel, M. S., & Inglis, G. D. (1997). Fungi: Hyphomycetes. In L. Lacey (Ed.), Manual of techniques in insect pathology (pp. 213–249). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Goettel, M. S., Eilenberg, J., & Glare, T. R. (2010). Entomopathogenic fungi and their role in regulation of insect populations. In L. I. Gilbert, K. Iatrou, & S. Gill (Eds.), Comprehensive molecular insect science (pp. 361–406). New York: Elsevier Inc.

    Google Scholar 

  • Guo, W., Yan, X., Zhao, G., & Han, R. (2017). Increased efficacy of entomopathogenic nematode–insecticide combinations against Holotrichia oblita (Coleoptera: Scarabaeidae). Journal of Economic Entomology, 110, 41–51.

    Article  CAS  Google Scholar 

  • James, R. R., & Elzen, G. W. (2001). Antagonism between Beauveria bassiana and imidacloprid when combined for Bemisia argentifolii (Homoptera: Aleyrodidae) control. Journal of Economic Entomology, 94, 357–361.

    Article  CAS  Google Scholar 

  • Jenkins, N. E., Heviefo, G., Langewald, J., Cherry, A. J., & Lomer, C. J. (1998). Development of mass production technology for aerial conidia for use as mycopesticides. Biocontrol News and Information, 19, 29–39.

    Google Scholar 

  • Jia, M., Cao, G., Li, Y., Tu, X., Wang, G., Nong, X., Whitman, D. W., & Zhang, Z. (2016). Biochemical basis of synergism between pathogenic fungus Metarhizium anisopliae and insecticide chlorantraniliprole in Locusta migratoria (Meyen). Scientific Reports, 6, 28424. https://doi.org/10.1038/srep28424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaya, H. K., & Gaugler, R. (1993). Entomopathogenic nematodes. Annual Review of Entomology, 38, 181–206.

    Article  Google Scholar 

  • Kaya, J. K., & Vega, F. E. (2012). Scope and basic principles of insect pathology. In J. K. Kaya & F. E. Vega (Eds.), Insect pathology (pp. 1–12). New York: Elsevier Inc..

    Google Scholar 

  • Khan, M. A., & Ahmad, W. (2015). The management of Spodopteran pests using fungal pathogens. In K. S. Sree & A. Varma (Eds.), Biocontrol of lepidopteran pests (pp. 123–160). Basel: Springer International Publishing.

    Google Scholar 

  • Khan, M. A., Paul, B., Ahmad, W., Paul, S., Aggarwal, C., Khan, Z., & Akhtar, M. S. (2016). Potential of Bacillus thuringiensis in the management of pernicious lepidopteran pests. In K. R. Hakeem & M. S. Akhtar (Eds.), Plant, soil and microbes (Vol. 2, pp. 277–301). Basel: Springer International Publishing.

    Chapter  Google Scholar 

  • Koppenhöfer, A. M., & Kaya, H. K. (1998). Synergism of imidacloprid and an entomopathogenic nematode: a novel approach to white grub (Coleoptera: Scarabaeidae) control of turfgrass. Journal of Economic Entomology, 91, 618–623.

    Article  Google Scholar 

  • Koppenhöfer, A. M., Grewal, P. S., & Kaya, H. K. (2000). Synergism of imidacloprid and entomopathogenic nematodes against white grubs: The mechanism. Entomologia Experimentalis et Applicata, 94, 283–293.

    Article  Google Scholar 

  • Koppenhöfer, A. M., Cowles, R. S., Cowles, E. A., Fuzy, E. M., & Baumgartner, L. (2002). Comparison of neonicotinoid insecticides as synergists for entomopathogenic nematodes. Biological Control, 24, 90–97.

    Article  Google Scholar 

  • Kumar, V., Avery, P. B., Ahmed, J., Cave, R. D., McKenzie, C. L., & Osborne, L. S. (2017). Compatibility and efficacy of Isaria fumosorosea with horticultural oils for mitigation of the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae). Insects, 8, E119. https://doi.org/10.3390/insects8040119.

    Article  PubMed  Google Scholar 

  • Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., & Goettel, M. S. (2015). Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology, 132, 1–41.

    Article  CAS  Google Scholar 

  • Laznik, Z., & Trdan, S. (2014). The influence of insecticides on the viability of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) under laboratory conditions. Pest Management Science, 70, 784–789.

    Article  CAS  Google Scholar 

  • Li, D. P., & Holdom, D. G. (1994). Effects of pesticides on growth and sporulation of Metarhizium anisopliae (Deuteromycotina: Hyphomycets). Journal of Invertebrate Pathology, 63, 209–211.

    Article  Google Scholar 

  • Maniana, N. K., Ekesil, S., Lohrl, B., & Mwangi, F. (2002). Prospects for biological control of the western flower thrips, Frankliniella occidentalis, with the entomopathogenic fungus, Metarhizium anisopliae, on chrysanthemum. Mycopathologia, 155, 229–235.

    Article  Google Scholar 

  • Marzieh, R., Ahmad, B., Aziz, S., Hamid-Reza, P., & Mehran, G. (2010). Compatibility of Metarhizium anisopliae (Ascomycota: Hypocreales) with several insecticides. Journal of Plant Protection Research, 50, 22–27.

    Google Scholar 

  • Mason, P. G., & Huber, J. T. (2002). Biological control programmes in Canada, 1981–2000. Wallingford: CABI.

    Google Scholar 

  • Muñiz-Paredes, F., Miranda-Hernández, F., & Loera, O. (2017). Production of conidia by entomopathogenic fungi: From inoculants to final quality tests. World Journal Microbiology Biotechnology, 33, 56–64.

    Article  Google Scholar 

  • Navarro, P. D., McMullen, J. G., II, & Stock, S. P. (2014). Effect of dinotefuran, indoxacarb, and imidacloprid on survival and fitness of two Arizona-native entomopathogenic nematodes against Helicoverpa zea (Lepidoptera: Noctuidae). Nematropica, 44, 64–73.

    Google Scholar 

  • Negrisoli, A. S., Garcia, M. S., & Negrisoli, C. R. S. B. (2010a). Compatibility of entomopathogenic nematodes (Nematoda: Rhabditida) with registered insecticides for Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) under laboratory conditions. Crop Protection, 29, 545–549.

    Article  Google Scholar 

  • Negrisoli, A. S., Garcia, M. S., Negrisoli, C. R. C. B., Bernardi, D., & da Silva, A. (2010b). Efficacy of entomopathogenic nematodes (Nematoda: Rhabditida) and insecticide mixtures to control Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) in corn crops. Crop Protection, 29, 677–683.

    Article  Google Scholar 

  • Neuenschwander, P., Borgemeister, C., & Langewald, J. (2003). Biological control in IPM systems in Africa (p. 414). Wallingford: CABI.

    Google Scholar 

  • Nishimatsu, T., & Jackson, A. J. (1998). Interaction of insecticides, entomopathogenic nematodes, and larvae of the Western Corn Rootworm (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 91, 410–418.

    Article  CAS  Google Scholar 

  • Oerke, E. C., Dehne, H. W., Schoenbeck, F., & Weber, A. (1994). Crop production and crop protection: Estimated losses in major food and cash crops. Amsterdam: Elsevier Inc.

    Google Scholar 

  • Omkar, B. K. (2016). Biocontrol of insect pests. In B. K. Omkar (Ed.), Ecofriendly pest management for food security (pp. 25–63). Oxford: Elsevier Inc.

    Chapter  Google Scholar 

  • Ortiz-Urquiza, A., & Keyhani, N. O. (2013). Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects, 4, 357–374.

    Article  Google Scholar 

  • Ortiz-Urquiza, A., Luo, Z., & Keyhani, N. O. (2015). Improving mycoinsecticides for insect biological control. Applied Microbiology and Biotechnology, 99, 1057–1068.

    Article  CAS  Google Scholar 

  • Pachamuthu, P., & Kamble, S. T. (2000). In vivo study on combined toxicity of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) strain ESC-1 with sublethal doses of chlorpyrifos, propetamphos, and cyfluthrin against German Cockroach (Dictyoptera: Blattellidae). Journal of Economic Entomology, 93, 60–70.

    Article  CAS  Google Scholar 

  • Pachamuthu, P., Kamble, S. T., & Yuen, G. Y. (1999). Virulence of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) Strain ESC-1 to the German cockroach (Dictyoptera: Blatellidae) and its compatibility with insecticides. University of Nebraska – Lincoln, http://digitalcommons.unl.edu/entomologyfacpub/311

  • Pedrini, N., Crespo, R., & Juarez, M. (2007). Biochemistry of insect epicuticle degradation by entomopathogenic fungi. Comparative Biochemistry and Physiology Part C Toxicology and Pharmacology, 146, 124–137.

    Article  Google Scholar 

  • Pelizza, S. A., Schalamuk, S., Simón, M. R., Stenglein, S. A., Pacheco-Marino, S. G., & Scorsetti, A. C. (2018). Compatibility of chemical insecticides and entomopathogenic fungi for control of soybean defoliating pest, Rachiplusia nu. Revista Argentina Microbiologica, 50, 189–201.

    Article  Google Scholar 

  • Pimentel, D. (2005). Environmental and economic costs of the application of pesticides primarily in the United States. Environment, Development and Sustainability, 7, 229–252.

    Article  Google Scholar 

  • Pretty, J. (2008). Agricultural sustainability: Concepts, principles and evidence. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 447–465.

    Article  Google Scholar 

  • Quintela, E., & McCoy, C. W. (1997). Pathogenicity enhancement of Metarhizium anisopliae and Beauveria bassiana to first instars of Diaprepes abbreviates (Coleoptera: Curculionidae) with Sublethal doses of Imidacloprid. Environmental Entomology, 26, 1173–1182.

    Article  CAS  Google Scholar 

  • Radova, S. (2010). Effect of selected pesticides on the vitality and virulence of the entomopathogenic nematode Steinernema feltiae (Nematoda: Steinernematidae). Plant Protection Science, 46, 83–88.

    Article  CAS  Google Scholar 

  • Sabino, P. H. S., Sales, F. S., Guevara, E. J., Moino, A., Jr., & Filgueiras, C. C. (2014). Compatibility of entomopathogenic nematodes (Nematoda: Rhabditida) with insecticides used in the tomato crop. Nematoda, 1, e03014.

    Google Scholar 

  • Serebrov, V. V., Alekseev, A. A., & Glupov, V. V. (2001). Changes in the activity and pattern of hemolymph esterases in the larvae of Greater Wax Moth Galleria mellonella L. (Lepidoptera, Pyralidae) during mycosis. Biology Bulletin, 28, 499–503.

    Article  CAS  Google Scholar 

  • Serebrov, V. V., Gerber, O. N., Malyarchuk, A. A., Martemyanov, V. V., Alekseev, A. A., & Glupov, V. V. (2006). Effect of entomopathogenic fungi on detoxification enzyme activity in Greater Wax Moth Galleria mellonella L. (Lepidoptera, Pyralidae) and role of detoxification enzymes in development of insect resistance to entomopathogenic fungi. Biology Bulletin, 33, 581–586.

    Article  CAS  Google Scholar 

  • Shaabani, M., Habibpour, B., & Mossadegh, M. S. (2015). Compatibility of the entomopathogenic fungus Metarhizium anisopliae senso lato with imidacloprid for control of Microcerotermes diversus Silvestri (Iso.: Termitidae) in laboratory conditions. Plant Pests Research, 5, 27–36.

    Google Scholar 

  • Shapiro-Ilan, D. I., Cottrell, T. E., & Wood, B. W. (2011). Effects of combining microbial and chemical insecticides on mortality of the Pecan Weevil (Coleoptera: Curculionidae). Journal of Economic Entomology, 104, 14–20.

    Article  Google Scholar 

  • Shapiro-Ilan, D., Hazir, S., & Glazer, I. (2017). Basic and applied research: Entomopathogenic nematodes. In L. A. Lacey (Ed.), Microbial control of insect and mite pests from theory to practice (pp. 91–105). Oxford: Academic press.

    Chapter  Google Scholar 

  • Sharififard, M., Mossadegh, M. S., Vazirianzadeh, B., & Zarei-Mahmoudabadi, A. (2011). Interactions between entomopathogenic fungus, Metarhizium anisopliae and sublethal doses of spinosad for control of house fly, Musca domestica. Iranian Journal of Arthropod-Borne Disease, 5, 28–36.

    CAS  Google Scholar 

  • Smith, H. S. (1919). On some phases of insect control by the biological method. Journal of Economic Entomology, 12, 288–292.

    Article  Google Scholar 

  • St. Leger, R. J., Charnley, A. K., & Cooper, R. M. (1986). Cuticle-degrading enzymes of entomopathogenic fungi: Regulation of production of chitinolytic enzymes. Journal of General Microbiology, 132, 1509–1517.

    CAS  Google Scholar 

  • Steinkraus, D. C. (1996, January 9–12). Control of tarnished plant bug with Beauveria bassiana and interactions with imidacloprid, In Proceedings, Beltwide cotton conference (pp. 888–889). Nashville, TN. National Cotton Council, Memphis, TN.

    Google Scholar 

  • Talebi-Jahroumi, K. (2012). Toxicology of pesticides. Tehran: University of Tehran Press. 500 pp.

    Google Scholar 

  • Tamai, M. A., Alves, S. B., Lopes, R. B., Faion, M., & Padulla, L. F. L. (2002). Toxicity of pesticides against Beauveria bassiana (Bals.) Vuill. Arquivos do Instituto Biológico, 69, 89–96. in Portuguese, with abstract in English.

    Google Scholar 

  • Zhang, L., Shono, T., Yamanaka, S., & Tanabe, H. (1994). Effects of insecticides on the entomopathogenic nematode Steinernema carpocapsae Weiser. Applied Entomology and Zoology, 29, 539–547.

    Article  CAS  Google Scholar 

  • Zhao, H., Lovett, B., & Fang, W. (2016). Genetically engineering entomopathogenic fungi. Advances in Genetics, 94, 137–163.

    Article  CAS  Google Scholar 

  • Zibaee, A., & Bandani, A. R. (2010). Purification and characterization of the cuticle-degrading protease produced by the entomopathogenic fungus, Beauveria bassiana in the presence of Sunn pest, Eurygaster integriceps (Hemiptera: Scutelleridae) cuticle. Biocontrol Science and Technology, 19, 797–808.

    Article  Google Scholar 

  • Zibaee, A., Bandani, A. R., & Tork, M. (2009). Effect of the entomopathogenic fungus, Beauveria bassiana, and its secondary metabolite on detoxifying enzyme activities and acetylcholinesterase (AChE) of the Sunn pest, Eurygaster integriceps (Heteroptera: Scutelleridae). Biocontrol Science and Technology, 19, 485–498.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Zibaee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zibaee, A. (2019). Entomopathogen and Synthetic Chemical Insecticide: Synergist and Antagonist. In: Khan, M., Ahmad, W. (eds) Microbes for Sustainable Insect Pest Management . Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-23045-6_13

Download citation

Publish with us

Policies and ethics