Skip to main content

Spatial Sound of Musical Instruments

  • Chapter
  • First Online:
Book cover Psychoacoustic Music Sound Field Synthesis

Part of the book series: Current Research in Systematic Musicology ((CRSM,volume 7))

  • 1324 Accesses

Abstract

Musical instruments create a spatial sound impression. This chapter provides an introduction to the acoustics of sound propagation from musical instruments. An overview of microphone array techniques to measure the sound radiation characteristics from the near and the far field is given. The complex point source model simplifies the physical constellation and describes what is heard by the listener. It serves as a simplification for psychoacoustic sound field synthesis for music presented in this book. Finally, the chapter illustrates strategies to visualize measured sound radiation properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As described in Ziemer (2011, 2018), mainly based on Pierce (2007), Williams (1999), Morse and Ingard (1986), Rabenstein et al. (2006) and Ahrens (2012).

  2. 2.

    See Mechel (2008), pp. 5f, Teutsch (2007), Wöhe (1984), Pierce (2007), p. 36 and Baalman (2008), p. 23.

  3. 3.

    See e.g. Hirschberg et al. (1996), describing shock-waves in brass instruments.

  4. 4.

    See e.g. Meyer et al. (2001), p. 2.

  5. 5.

    See e.g. Williams (1999), p. 21.

  6. 6.

    See Williams (1999), p. 22.

  7. 7.

    See Ahrens (2012), p. 23.

  8. 8.

    Or an exponential increase which is ignored since it is non-physical, see Ahrens (2012), p. 23.

  9. 9.

    See e.g. Müller (2008), p. 65.

  10. 10.

    See e.g. Vorländer (2008).

  11. 11.

    See e.g. Roederer (2008), pp. 89f.

  12. 12.

    See Ahrens (2012), p. 42.

  13. 13.

    Cf. e.g. Ahrens (2012), p. 66.

  14. 14.

    See e.g. Mechel (2013), p. 2, Magalhães and Tenenbaum (2004), p. 204, Ahrens (2012), p. 42.

  15. 15.

    From Kostek (2005), p. 24.

  16. 16.

    From Warusfel et al. (1997), p. 1.

  17. 17.

    See Schanz (1966), p. 2.

  18. 18.

    Cf. Rossing (1990), p. 48.

  19. 19.

    See Fletcher and Rossing (2008), p. 308.

  20. 20.

    An examination of the relationship between features of direct sound and  perceived source extent can be found e.g. in Ziemer (2014) and will be discussed in the context of  room acoustics in more detail in Sect. 6.2.

  21. 21.

    Albrecht et al. (2005), p. 1.

  22. 22.

    Referred to as “structure- and air-borne sound”, see e.g. Blauert and Xiang (2009), p. 177.

  23. 23.

    See Hall (2008), pp. 290–294.

  24. 24.

    See Meyer (2008), p. 156, Warusfel et al. (1997), p. 4, Pätynen and Lokki (2010) and Otondo and Rindel (2005).

  25. 25.

    In Meyer (2009), pp. 129–177, Meyer (2008), pp. 123–180, Pätynen and Lokki (2010), and in Hohl (2009) and Hohl and Zotter (2010).

  26. 26.

    See Meyer (2009), p. 24, Hammond and White (2008), pp. 4–7 and Hall (2008), pp. 124–125.

  27. 27.

    See Bruhn (2002), p. 452.

  28. 28.

    See e.g. Williams (1999), p. 89 and p. 236.

  29. 29.

    For an extensive revision of these and other methods, current research and prospects, see e.g. Magalhães and Tenenbaum (2004).

  30. 30.

    See e.g. Pätynen and Lokki (2010), p. 139.

  31. 31.

    See e.g. Otondo and Rindel (2004), p. 1179 or Otondo and Rindel (2005), p. 903, Pelzer et al. (2012), Pätynen and Lokki (2010) and Zotter et al. (2007).

  32. 32.

    Mainly based on Williams (1999), pp. 183–208, Teutsch (2007), pp. 41ff, Arfken (1985), pp. 111ff and pp. 573ff, Slavik and Weinzierl (2008) and Ahrens (2012), p. 24ff.

  33. 33.

    See e.g. Williams (1999), p. 185.

  34. 34.

    See e.g. Teutsch (2007), p. 44, Ahrens (2012), p. 31, Hulsebos (2004), pp. 16–19 and Zotter (2009), p. 35.

  35. 35.

    See e.g. Magalhães and Tenenbaum (2004), p. 204, Ziemer (2014, 2015, 2017), Ziemer and Bader (2015).

  36. 36.

    See Arfken (1985), p. 604.

  37. 37.

    See e.g. Kim (2007), p. 1079.

  38. 38.

    See e.g. Gannot and Cohen (2008), p. 946.

  39. 39.

    Mainly based on Hald (2008) and Michel and Möser (2010).

  40. 40.

    See e.g. Michel and Möser (2010).

  41. 41.

    These are presented e.g. in Bader (2014), Michel and Möser (2010), and Gannot and Cohen (2008).

  42. 42.

    See e.g. Yang et al. (2008), p. 157.

  43. 43.

    See e.g. Yang et al. (2008), Maynard et al. (1985), Hayek (2008), Kim (2007).

  44. 44.

    As proposed in Bader (2010) and discussed extensively in Bader (2014).

  45. 45.

    See Bader et al. (2009, 2017), Richter et al. (2013), Münster et al. (2013), Bader (2011, 2012a, b), Pfeifle (2016), Takada and Bader (2012), and Plath et al. (2015).

  46. 46.

    See e.g. Magalhães and Tenenbaum (2004), pp. 200ff.

  47. 47.

    See e.g. Ih (2008), Bai (1992), Veronesi and Maynard (1989).

  48. 48.

    See e.g. Hutchins (1977, 1981) and Hutchins et al. (1971).

  49. 49.

    See e.g. Fleischer (2000).

  50. 50.

    See e.g. Bader (2013), p. 57 and p. 113.

  51. 51.

    This and other optical measurement methods are explained e.g. in Molin (2007) and Molin and Zipser (2004).

  52. 52.

    See e.g. Saldner et al. (1997).

  53. 53.

    See e.g. Meyer (1995, 2008, 2009).

  54. 54.

    See e.g. Meyer (2008), p. 156.

  55. 55.

    See e.g. Vorländer (2008), p. 127.

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Ziemer .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ziemer, T. (2020). Spatial Sound of Musical Instruments. In: Psychoacoustic Music Sound Field Synthesis. Current Research in Systematic Musicology, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-030-23033-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23033-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23032-6

  • Online ISBN: 978-3-030-23033-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics