Skip to main content

X-Ray Phase Contrast Imaging of Granular Systems

  • Chapter
  • First Online:
Shock Phenomena in Granular and Porous Materials

Abstract

Dynamic compression experiments have proven useful for decades in examining material response at high pressures and providing equation-of-state and other information on numerous phenomena including phase transitions, strength, and kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dolan DH, Knudson M, Hall C, Deeney C (2007) A metastable limit for compressed liquid water. Nat Phys Lett 3:339–347

    Article  Google Scholar 

  2. Jensen BJ, Cherne FJ, Cooley JC, Zhernokletov M, Kovalev A (2010) Shock melting of cerium. Phys Rev B 81:214109

    Article  ADS  Google Scholar 

  3. Jensen BJ, Cherne FJ (2012) Dynamic compression of cerium in the low-pressure γ − α region of the phase diagram. J Appl Phys 112:013515

    Article  ADS  Google Scholar 

  4. Asay JR, Fowles GR, Duvall GE, Miles MH, Tinder RF (1972) Effects of point defects on elastic precursor decay in LiF. J Appl. Phys 43:2132

    Article  ADS  Google Scholar 

  5. Jensen BJ, Gray GT, Hixson RS (2009) Direct measurement of the alpha-epsilon transition kinetics and stress for shocked iron. J Appl Phys 105:103502

    Article  ADS  Google Scholar 

  6. Jensen BJ, Gupta YM (2008) Time-resolved X-ray diffraction experiments to examine the elastic-plastic transition in shocked magnesium-doped LiF. J Appl Phys 104:013510

    Article  ADS  Google Scholar 

  7. d’Almeida T, Gupta YM (1999) Real-time X-ray diffraction measurements of the phase transition in KCl shocked along [100]. Phys Rev Lett 85:2

    Google Scholar 

  8. Dolan DH (2007) Characterizing the emissivity of materials under dynamic compression. SAND2007-6376, Sandia National Laboratory

    Google Scholar 

  9. Gupta YM, Turneaure SJ, Perkins K, Zimmerman K, Arganbright N, Shen G, Chow P (2012) Real-time, high-resolution X-ray diffraction measurements on shocked crystals at a synchrotron facility. Rev Sci Instrum 83:123905

    Article  ADS  Google Scholar 

  10. Rigg PA, Schwartz CL, Hixson RS, Hogan GE et al (2008) Proton radiography and accurate density measurements: a window into shock wave processes. Phys Rev B 77:220101

    Article  ADS  Google Scholar 

  11. Kalantar DH, Belak JF, Collins GW, Colvin JD, Davies HM et al (2005) Direct observation of the α − 𝜖 transition in shock-compressed iron via nanosecond X-ray diffraction. Phys Rev Lett 95:075502

    Google Scholar 

  12. Schropp A et al (2015) Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL. Sci Rep 5:11089

    Article  ADS  Google Scholar 

  13. Luo SN, Jensen BJ, Hooks DE, Fezzaa K, Ramos KJ, Yeager JD et al (2012) Gas gun shock experiments with single-pulse X-ray phase contrast imaging and diffraction at the advanced photon source. Rev Sci Instrum 83:073903

    Article  ADS  Google Scholar 

  14. Jensen BJ, Luo SN, Hooks DE, Fezzaa K, Ramos KJ, Yeager JD et al (2012) Ultrafast, high resolution, phase contrast imaging of impact response with synchrotron radiation. AIP Adv 2:012170

    Article  ADS  Google Scholar 

  15. Jensen BJ, Owens CT, Ramos KJ, Yeager JD et al (2013) Impact system for ultrafast synchrotron experiments. Rev Sci Instrum 84:013904

    Article  ADS  Google Scholar 

  16. Wilkins SW, Gureyev TE, Gao D, Pogany A, Stevenson AW (1996) Phase-contrast imaging using polychromatic hard X-rays Nature 384:335

    Google Scholar 

  17. Wu X, Liu H (2003) Clinical implementation of X-ray phase contrast imaging: theoretical foundations and design considerations. Med Phys 30:2169

    Article  Google Scholar 

  18. Zoofan B, Kim JY, Rokhlin SI, Frankel GS (2006) Phase-contrast X-ray imaging for nondestructive evaluation of materials. J Appl Phys 100:014502

    Article  ADS  Google Scholar 

  19. Wang Y, Liu X, Im KS, Lee WK, Fezzaa K (2008) Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry. Nature 4:305–309

    Google Scholar 

  20. Fezzaa K, Wang Y (2008) Ultrafast X-ray phase contrast imaging of the initial coalescence phase of two water droplets. Phys Rev Lett 100:104501

    Article  ADS  Google Scholar 

  21. Yeager JD, Luo SN, Jensen BJ, Fezzaa K, Montgomery DS, Hooks DE (2012) High-speed synchrotron X-ray phase contrast imaging for analysis of low-Z composite microstructure. Comput Part A 43:885

    Article  Google Scholar 

  22. Ramos KJ, Jensen BJ, Iverson AJ, Yeager JD, Carlson CA, Montgomery DS et al (2014) In situ investigation of the dynamic response of energetic materials using IMPULSE at the advanced photon source. J Phys Conf Ser 500:142028

    Article  Google Scholar 

  23. Ramos KJ, Jensen BJ, Yeager JD, Bolme CA, Iverson AJ et al (2014) Investigation of dynamic material cracking with in situ synchrotron-based measurements. In Song B, Casem D, Kimberley J (eds) Conference proceedings of the society for experimental mechanics series. Springer, New York, pp 413–420

    Google Scholar 

  24. Ramos KJ, Jensen BJ, Iverson AJ, Yeager JD et al (2014) In situ investigation of the dynamic response of energetic materials using IMPULSE at the advanced photon source. In Buttler WT, Evans WJ (eds) Journal of physics: conference series. IOP Publishing 500:142028

    Google Scholar 

  25. Jensen BJ, Ramos KJ, Iverson AJ, Bernier J et al (2014) Dynamic experiment using IMPULSE at the advanced photon source. In Buttler WT, Evans WJ (eds) Journal of physics: conference series. IOP Publishing 500:042001

    Google Scholar 

  26. Jensen BJ, Cherne FJ, Prime MB, Fezzaa K, Iverson AJ et al (2015) Jet formation in cerium metal to examine material strength. J Appl Phys 118:0195903

    Article  ADS  Google Scholar 

  27. Brown EN, Furmanski J, Ramos KJ, Dattelbaum DM, Jensen BJ et al (2014) High-density polyethylene damage at extreme tensile conditions. In Buttler WT, Evans WJ (eds) Journal of Physics: Conference Series. IOP Publishing 500:112011

    Google Scholar 

  28. Hawreliak JA, Lind J, Maddox B, Barham M, Messener M, Barton N, Jensen BJ, Kumar M (2016) Dynamic behavior of engineered lattice materials. Nat Sci Rep 6:28094

    Article  ADS  Google Scholar 

  29. Willey TM, Champley K, Hodgin R, Lauderbach L, Bagge-Hansen M, May C, Sanchez N, Jensen BJ, Iverson AJ, van Buuren T (2016) X-ray imaging and 3D reconstruction of in-flight exploding foil initiators. J Appl Phys 119:235901

    Article  ADS  Google Scholar 

  30. Herrmann W (1969) Constitutive equation for the dynamic compaction of ductile porous materials. J Appl Phys 40:2490–2499

    Article  ADS  Google Scholar 

  31. Carroll M, Holt AC (1972) Static and dynamic pore-collapse relations for ductile porous materials. J Appl Phys 43:759–761

    Article  ADS  Google Scholar 

  32. Grady D, Winfree NA, Kerley GI, Wilson LT, Kuhns LD (2000) Computational modeling and wave propagation in media with inelastic deforming microstructure. J Phys IV France 10: 15–20

    Article  Google Scholar 

  33. Studman CJ, Field JE (1984) The influence of brittle particles on the contact between rigid surfaces. J Phys D: Appl Phys 17:1631–1646

    Article  ADS  Google Scholar 

  34. Lorenz A, Tuozzolo C, Louge MY (1997) Measurement of impact properties of small, nearly spherical particles. Exp Mech 37:292–298

    Article  Google Scholar 

  35. Andrews EW, Kim KS (1999) Threshold conditions for dynamic fragmentation of glass particles. Mech Mater 31:689–703

    Article  Google Scholar 

  36. ABAQUS (2011) ABAQUS Documentation. Dassault Systèmes, Providence, RI, USA

    Google Scholar 

  37. Addessio FL, Johnson JN (1990) A constitutive model for the dynamic response of brittle materials. J Appl Phys 67:3275

    Article  ADS  Google Scholar 

  38. Snigirev A, Snigireva I, Kohn V, Kuznetsov S, Schelokov I (1995) On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev Sci Instrum 66:5486

    Article  ADS  Google Scholar 

  39. Pogany A, Gao D, Wilkins SW (1997) Contrast and resolution in imaging with a microfocus X-ray source. Rev Sci Instrum 68:2774

    Article  ADS  Google Scholar 

  40. Montgomery DS, Nobile A, Walsh PJ (2004) Characterization of National Ignition Facility cryogenic beryllium capsules using X-ray phase contrast imaging. Rev Sci Instrum 75:3986

    Article  ADS  Google Scholar 

  41. Montgomery DS, Gautier DC, Kozioziemski BJ, Moody JD, Evans SC et al (2006) Characterization of D-T cryogenic layer formation in a Beryllium capsule using X-ray phase contrast imaging. J Phys IV 133:869

    Google Scholar 

  42. Medlovic D, Zalevsky Z, Konforti N (1997) Computation considerations and fast algorithms for calculating the diffraction integral. J Mod Opt 44:407–413

    Article  ADS  MathSciNet  Google Scholar 

  43. Cloetens P, Ludwig W, Baruchel J, Guigay JP, Pernot-Rejmankova P, Salomé-Pateyron M et al (1999) Hard X-ray imaging using simple propagation of a coherent synchrotron radiation beam. J Phys D 32:10A

    Article  Google Scholar 

  44. Dejus RJ, Sanchez del Rio M (1996) XOP: a graphical user interface for spectral calculations and X-ray optics utilities. Rev Sci Instrum 67:3356

    Article  ADS  Google Scholar 

  45. Gerchberg RW, Saxton WO (1972) A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35:237

    Google Scholar 

  46. Fienup JR (1982) Phase retrieval algorithms: a comparison. Appl Opt 21:2758

    Article  ADS  Google Scholar 

  47. Teague MR (1985) Image formation in terms of the transport equation. J Opt Soc Am A 2:2019

    Article  ADS  Google Scholar 

  48. Paganin D, Mayo SC, Gureyev TE, Miller PR, Wilkins SW (2002) Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Micro 206:33

    Article  MathSciNet  Google Scholar 

  49. Gureyev TE (2003) Composite techniques for phase retrieval in the Fresnel region. Opt Commun 220:49

    Article  ADS  Google Scholar 

  50. Mayo SC, Davis TJ, Gureyev TE, Miller PR, Paganin D et al (2003) X-ray phase contrast microscopy and microtomography. Opt Express 11:2289

    Article  ADS  Google Scholar 

  51. Jensen BJ, Gupta YM (2006) X-ray diffraction measurements in shock compressed magnesium doped LiF crystals. J Appl Phys 100:053512

    Article  ADS  Google Scholar 

  52. Rigg PA, Gupta YM (2006) Time-resolved X-ray diffraction measurements and analysis to investigate shocked lithium fluoride crystals. J Appl Phys 93:3291–3298

    Article  ADS  Google Scholar 

  53. Rigg PA, Gupta YM (2001) Multiple X-ray diffraction to determine transverse and longitudinal lattice deformation in shocked lithium fluoride crystals. Phys Rev B 63:094112

    Article  ADS  Google Scholar 

  54. Gupta YM, Zimmerman KA, Rigg PA, Zaretsky EB, Savage DM (1999) Experimental developments to obtain real-time X-ray diffraction measurements in plate impact experiments. Rev Sci Instrum 70:4008

    Article  ADS  Google Scholar 

  55. Sarrao JL (2012) MaRIE 1.0: a flagship facility for predicting and controlling materials in dynamic extremes. LA-UR 12-00500. Los Alamos National Laboratory

    Google Scholar 

Download references

Acknowledgements

This work was performed at Los Alamos National Laboratory (LANL) and at Argonne National Laboratory’s (ANL) Advanced Photon Source (APS). Charles T. Owens (LANL), the lead technician for IMPULSE, is gratefully acknowledged for technical assistance with target and projectile fabrication, gun setup, system maintenance, and shot execution. The MPCI system was developed as a collaborative effort between LANL and National Security Technologies (NSTec). A. Deriy and K. Fezzaa (ANL) are thanked for technical support at Sector 32 ID-B of the Advanced Photon Source (APS) where the initial dynamic experiments were performed. One of the authors, B.J.J, would like to thank and acknowledge the other two IMPULSE co-founders, Sheng Lou and Dan Hooks, for their roles in the initial PCI detector setup and early project direction, respectively, which led to the first experiments on IMPULSE in 2011. Additional experiments were performed later at the Dynamic Compression Sector (Sector 35 of the APS) during the early commissioning phase of its development. Tim Graber and N. Sinclair are thanked for technical support for experiments conducted at the DCS. This work was supported by LANL’s MaRIE concept, Science Campaign programs, Joint Munition Programs (JMP), and the NSTech (Los Alamos Office) Shock Wave Related Diagnostics program. LANL is operated by Los Alamos National Security, LLC for the U.S. Department of Energy (DOE) under Contract No. DE-AC52-06NA25396. Use of the Advanced Photon Source, an Office of Science User Facility operated by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. The Dynamic Compression Sector was supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002442 and operated by Washington State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jensen, B.J. et al. (2019). X-Ray Phase Contrast Imaging of Granular Systems. In: Vogler, T., Fredenburg, D. (eds) Shock Phenomena in Granular and Porous Materials. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-030-23002-9_7

Download citation

Publish with us

Policies and ethics