Skip to main content

Applications of Reactive Materials in Munitions

  • Chapter
  • First Online:
Shock Phenomena in Granular and Porous Materials

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

Abstract

This chapter describes reactive materials that are researched for use in conventional weapon applications. Production of powders from nano-scale to mm particle sizes using methods such as ball milling, vapor deposition, electro-spraying, etc. are detailed. The properties of reactive material powders achieved from these methods, their microstructure, and its effect on achieving different reaction rates and energy efficiencies are discussed. The use of reactive powders in several applications such as agent-defeat weapons, explosive formulations, propellant, and warhead liners are elucidated. Then, methods to prepare structural reactive materials (or reactive material structures), such as hot isostatic pressing, fiber reinforcing, etc. are considered together with their munitions applications such as enhanced blast, reactive fragments, and penetrator cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Woody DL, Davis JJ, Miller P (1996) Metal/metal exothermic reactions induced by low velocity impact. In: MRS Proceedings, vol 418. Materials Research Society, Boston, pp 445–449

    Google Scholar 

  2. Johnson CE, Higa KT (1999) USA patent no. 5,885,321

    Google Scholar 

  3. Dreizin EL (2009) Metal-based reactive nanomaterials. Prog Energy Combust Sci 35:141–167

    Article  Google Scholar 

  4. Beckstead M (2005) Correlating Aluminum burning times. Combust Explos Shock Waves 41:533–546

    Article  Google Scholar 

  5. Trunov MA, Schenitz M, Dreizin EI (2005) Ignition of aluminum powders under different experimental conditions. Propellants Explos Pyrotech 30:36–43

    Article  Google Scholar 

  6. Armstrong R, Thadhani NN, Wilson W, Gilman J (2004) Synthesis, characterization and properties of energetic/reactive nanomaterials. In: MRS Proceedings, vol 800. Materials Research Society, Boston, pp 3–392

    Google Scholar 

  7. Gash AE, Satcher JH, Simpson RL (2003) Strong akaganeite aerogel monoliths using epoxides: synthesis and characterization. Chem Mater 15:3268–3275

    Article  Google Scholar 

  8. Jouet R, Warren AD, Rosenberg DM, Bellito VJ, Park K, Zachariah MR (2005) Surface passivation of bare aluminum nanoparticles using perfluoroalkyl carboxylic acids. Chem Mater 17:2987–2996

    Article  Google Scholar 

  9. Stover AK, Krywopusk NM, Gibbins JD, Weihs TP (2014) Mechanical fabrication of reactive metal laminate powders. J Mater Sci 49:5821–5830

    Article  ADS  Google Scholar 

  10. Abdulstaar M, El-Danaf E, Waluyo N, Wagner L (2013) Severe plastic deformation of commercial purity aluminum by rotary swaging: microstructure evolution and mechanical properties. Mater Sci Eng A 565:351–358

    Article  Google Scholar 

  11. Gibbins JD, Stover AK, Krywopusk NM, Woll K, Weihs TP (2015) Properties of reactive Al:Ni compacts fabricated by radial forging of elemental and alloy powders. Combust Flame 162:4408–4416

    Article  Google Scholar 

  12. Woll K, Gibbins JS, Kinsey A, Weihs T (2016) The utilization of metal/metal oxide core-shell powders to enhance the reactivity of diluted thermite mixtures. Combust Flame 167:259–267

    Article  Google Scholar 

  13. Li X, Guerieri P, Zhou W, Huang C, Zachariah MR (2015) Direct deposit laminate nanocomposites with enhanced propellent properties. Appl Mater Interfaces 7:9103–9109

    Article  Google Scholar 

  14. Guerieri P, DeCarlo S, Eichhorn B, Connell T, Yetter R, Tang X, Bowen KZ (2015) Molecular aluminum additive for burn enhancement of hydrocarbon fuels. J Phys Chem 119:11084–11093

    Article  Google Scholar 

  15. Wang H, Jian G, Yan S, DeLisio J, Huang C, Zachariah M (2013) Electrospray formation of gelled nano-aluminum microspheres with superior reactivity. ACS Appl Mater Interfaces 5:6797–6801

    Article  Google Scholar 

  16. Jacob R, Wei B, Zachariah M (2016) Quantifying the enhanced combustion characteristics of electrospray assembled aluminum mesoparticles. Combust Flame 167:472–480

    Article  Google Scholar 

  17. Abraham A, Zhong Z, Liu R, Grinshpun S, Yermakov M, Indugula R, Schoenitz DE (2016) Preparation, ignition, and combustion of Mg-S reactive nanocomposites. Combust Sci Technol 188:1345–1364

    Article  Google Scholar 

  18. Merupo V, Velumani S, Ordon K, Errien N, Szade J, Kassiba A (2015) Structural and optical characterization of ball-milled copper-doped bismuth vanadium oxide (BiVO4). CrystEngComm 17:3366–3375

    Article  Google Scholar 

  19. German RM (1998) Powder metallurgy of iron and steel. Wiley, New York

    Google Scholar 

  20. Abraham A, Schoenitz M, Dreizin EL (2016) Energy storage materials with oxide-encapsulated inclusions of low-melting metal. Acta Mater 107:254–260

    Article  Google Scholar 

  21. Aly Y, Dreizin E (2015) Ignition and combustion of AlMg alloy powders prepared by different techniques. Combust Flame 162:1440–1447

    Article  Google Scholar 

  22. Abraham A, Obamedo J, Schoenitz M, Dreizin E (2015) Effect of composition on properties of reactive AlBI2 powders prepared by mechanical milling. J Phys Chem Solids 83:1–7

    Article  ADS  Google Scholar 

  23. Wang S, Abraham A, Zhong Z, Schoenitz M, Dreizin E (2016) Ignition and combustion of boron-based AlBI2 and MgBI2 composites. Chem Eng J 293:112–117

    Article  Google Scholar 

  24. Specht PE, Thadhani NN, Weihs TP (2012) Configurational effects on shock wave propagation in Ni-Al multilayer composites. J Appl Phys 111:073527–073521

    Article  ADS  Google Scholar 

  25. Sraj I, Specht PE, Thadhani NN, Weihs TP, Knio OM (2014) Numerical simulation of shock initiation of Ni/Al multilayer composites. J Appl Phys 115:023515

    Article  ADS  Google Scholar 

  26. Specht EP, Weihs PT, Thadhani NN (2016) Interfacial effects on the dispersion and dissipation of shock waves in Ni/Al multilayer composites. J Dyn Behav Mater 2:500–510

    Article  Google Scholar 

  27. Austin AR, McDowell LD, Benson JD (2014) The deformation and mixing of several Ni/Al powders under shock wave loading: effects of initial configuration. Model Simul Mater Sci Eng 22:025018

    Article  ADS  Google Scholar 

  28. Overdeep KR, Livi KJ, Allen DJ, Glumac NG, Weihs TP (2015) Using magnesium to maximize heat generated by reactive Al/Zr nanolaminates. Combust Flame 162:2855–2864

    Article  Google Scholar 

  29. Goroshin S, Frost DL, Ripley R, Zhang F (2016) Measurement of particle density during explosive particle dispersal. Propellants Explos Pyrotech 41:245–253

    Article  Google Scholar 

  30. Isert S, Lane CD, Gunduz IE, Son FS (2016) Tailoring burn rate using reactive wires in composite solid rocket propellants. Proc Combust Inst 6:141–149

    Google Scholar 

  31. Connell TL, Risha GA, Yetter RA (2015) Boron and polytetrafluoroethylene as a fuel composition in hybrid rocket applications. J Propuls Power 31:373–385

    Article  Google Scholar 

  32. Wu T, Li X, Hu X, Delisio JB, Zhou W, Zachariah MR (2015) Direct-deposition to create high particle loading propellants with controlled architecture: combustion and mechanical properties. Am Inst Aeronaut Astronaut 688:1–9

    Google Scholar 

  33. Brousseau P, Anderson CJ (2002) Nanometric aluminum in explosives. Propellants Explos Pyrotech 27:300–306

    Article  Google Scholar 

  34. Sullivan KT, Piekiel NW, Wu C, Chowdhury S, Kelly ST, Hufnagel TC, Zachariah MR (2011) Reactive sintering: an important component in the combustion of nanocomposite. Combust Flame 159:2–15

    Article  Google Scholar 

  35. Clement D, Diener J, Gross E, Kunzmer N, Timosh VY (2005) Highly explosive nanosilicon-based composite materials. Phys Status Solidi 202:1357–1364

    Article  ADS  Google Scholar 

  36. Crouse CA, Pierce CJ, Spowart JE (2012) Synthesis and reactivity of aluminized fluorinated acrylic (AlFA) nanocomposites. Combust Flame 159:3199–3207

    Article  Google Scholar 

  37. Nguyen CV (2015) HIP simulation. http://www.iwm.rwthaachen.de/indes.php?id=549. Accessed Dec 2016

  38. Zahrah T, Kecskes L, Rowland R (2008) Smart processing of tungsten-bulk metallic glass composites. In: International conference on tungsten, refractory & hard materials VII, Washington, DC

    Google Scholar 

  39. Biancaniello F, Zahrah T, Jiggetts R, Kecskes L, Rowland R, Maters S, Ridder S (2003) Structure and properties of consolidated amorphous metal powder. In: Powder materials: current research and industrial practices III. Wiley, Hoboken, pp 265–272

    Google Scholar 

  40. Ren J, Liu XN (2016) Microstructure and mechanical properties of W-Zr reactive materials. Mater Sci Eng A 660:205–212

    Article  Google Scholar 

  41. Bloomfield S (2012) Precision lethality responds to urgent operational need. http://www.wpafb.af.mil/News/Article-Display/Article/399665/precision-lethality-responds-to-urgent-operational-need. Accessed Dec 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhithi M. Peiris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peiris, S.M., Bolden-Frazier, N. (2019). Applications of Reactive Materials in Munitions. In: Vogler, T., Fredenburg, D. (eds) Shock Phenomena in Granular and Porous Materials. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-030-23002-9_6

Download citation

Publish with us

Policies and ethics