Skip to main content

Recent Insights into Penetration of Sand and Similar Granular Materials

  • Chapter
  • First Online:
Shock Phenomena in Granular and Porous Materials

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

Abstract

This chapter is concerned with kinetic energy driven penetration into soils and soil-like granular materials. Historically this is a topic of great interest to military and civil engineers. The response of granular materials to dynamic loading also has implications for many other branches of engineering and planetary physics. Kinetic energy driven penetration refers to movement of projectiles following high-speed impact. For the phenomena discussed in this paper, there are no forces on the penetrator except the force by which the target resists penetration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iskander M, Bathurst R, Omidvar M (2015) Past, present, and future of transparent soils. Geotech Test J 38:1–17. https://doi.org/10.1520/GTJ20150079

    Article  Google Scholar 

  2. Iskander M, Bless S, Omidvar M (2015) Rapid penetration into granular media. Elsevier, Amsterdam

    Google Scholar 

  3. Peden R, Omidvar M, Bless S, Iskander M (2014) Photonic Doppler velocimetry for study of rapid penetration into sand. Geotech Test J 37:139–150

    Article  Google Scholar 

  4. Omidvar M, Iskander M, Bless S (2012) Stress-strain behavior of sand at high strain rates. Int J Impact Eng 49:192–213

    Article  Google Scholar 

  5. Clark AH, Kondic L, Behringer RP (2012) Particle scale dynamics in granular impact. Phys Rev Lett 109:238302

    Article  ADS  Google Scholar 

  6. Borg J (2017) Projectile penetration into sand targets. In: American Physical Society topical conference on shock compression of condensed matter, St Louis, MO. 2017APS. SHK.D6003B

    Google Scholar 

  7. Kondic L, Goullet A, O’Hern CS, Kramar M, Mishaikow M, Behringer RP (2012) Topology of force networks in compressed granular media. Eourophys Lett 97:54001. https://doi.org/10.1209/0295-5075/97/54001

    Article  ADS  Google Scholar 

  8. Myers MA (1994) Dynamic behavior of materials. Wiley, New York

    Book  Google Scholar 

  9. Tate T (1969) Further results in the theory of long rod penetration. Journal of Mechanics and Physics of Solids 17:141

    Article  ADS  Google Scholar 

  10. Flis W, Jann D, Shan K (2008) Supersonic penetration by Wedges and Cones into dry sand. In: 24th international symposium on ballistics, Sept. 22–26, Orlando, FL

    Google Scholar 

  11. Bless S, Berry D, Pedersen B, Lawhorn W (2009) Sand penetration by high-speed projectiles. In: 16th American Physical Society shock compression of condensed matter, June 28–July 3, 2009, Nashville, TN

    Google Scholar 

  12. Dwivedi SK, Teeter RD, Felice CW, Gupta UM (2008) Two dimensional mesoscale simulations of projectile instability during penetration of dry sand. J Appl Phys 104:083502

    Article  ADS  Google Scholar 

  13. Savvateev AF, Budin AV, Kolikov VA, Rutberg PG (2001) High-speed penetration into sand. Int J Impact Eng 26:675

    Article  Google Scholar 

  14. Schneider E, Stilp A (1984) Projectile penetration into low density media. In: 8th international symposium on ballistics, Orlando, FL

    Google Scholar 

  15. Satapathy S (2001) Cavity shape evolution during penetration of yawed long rods. In: 20th international symposium on ballistics. Interlaken, Switzerland, May 2001

    Google Scholar 

  16. Bless S, Peden B, Guzman I, Omidvar M (2013) Poncelet coefficients of granular media. In: Song B, Casem D, Kimberley J (eds) Dynamic behavior of materials, Conference proceedings of the Society for Experimental Mechanics series, vol 1. Springer, New York, p 528

    Google Scholar 

  17. Forrestal MJ, Luk VK (1992) Penetration into soil targets. Int J Impact Eng 12:427–444

    Article  Google Scholar 

  18. Young CW (1997) Penetration equations. Report no. SAND97–2426. Sandia Laboratories, Albuquerque

    Google Scholar 

  19. Guzman I, Iskander M, Bless S, Qi C (2014) Terminal depth of penetration of spherical projectiles in transparent granular media. Granul Matter 16:829–884. https://doi.org/10.1007/s10035-014-0528-y

    Article  Google Scholar 

  20. Thompson JB (1975) Low-velocity impact penetration of low-velocity soil deposits. Ph.D. dissertation. University of California, Berkeley

    Google Scholar 

  21. Glössner C, Moser S, Külls K, Hess S, Nau S, Penamadu D, Petrinic N (2017) Instrumented projectile penetration testing of granular materials. Exp Mech 57:271–272. https://doi.org/10.1007/s11340=016-0228-0

    Article  Google Scholar 

  22. Collins AL, Addiss JW, Walley SM, Promratana K, Bobaru F, Proud WG (2011) The effect of nose shape on the internal flow fields during ballistic penetration of sand. Int J Impact Eng 38:951

    Article  Google Scholar 

  23. Omidvar M, Doreau Malioche J, Bless S, Iskander M (2015) Phenomenology of rapid projectile penetration into granular soils. Int J Impact Eng 85:146–160

    Article  Google Scholar 

  24. Omidvar M, Iskander M, Bless S (2016) Soil-projectile interactions during low velocity penetration. Int J Impact Eng 93:211–221. https://doi.org/10.1016/j.ijimpeng.2016.02.015

    Article  Google Scholar 

  25. Chen Z, Omidvar M, Iskander M, Bless S (2014) Modelling of projectile penetration into transparent sand. Int J Phys Model Geotech 14:68–79. https://doi.org/10.1680/ijpmg.14.00003

    Article  Google Scholar 

  26. Omidvar M, Malioche JD, Chen Z, Iskander M, Bless S (2015) Visualizing kinematics of dynamic penetration in granular media using transparent soils. Geotech Test J 38:18. https://doi.org/10.1520/GTJ20140206

    Article  Google Scholar 

  27. Chapman DJ, Tsembalis T, Proud WG (2006) The behaviour of water saturated sand under shock loading. In: Proc 2006 Society of Engineering Mechanics annual conference and exposition on experimental and applied mechanics, vol 2. Society for Experimental Mechanics, Bethel

    Google Scholar 

  28. Taylor T, Fragaszy RJ, Ho CL (1991) Projectile penetration in granular soils. J Geotech Eng 117:658–672

    Article  Google Scholar 

  29. Guzman I, Iskander M, Bless S (2015) Observations of projectile penetration into a transparent soil. Mech Res Commun 70:4–11

    Article  Google Scholar 

  30. Omidvar M, Chen Z, Iskander M (2014) Image-based Lagrangian analysis of granular kinematics. J Comput Civ Eng 29:04014101

    Article  Google Scholar 

  31. Backofen J (1989) Supersonic compressible modeling of shaped charge jets. Int Symp Ballist 2:395–406

    Google Scholar 

  32. Kotov VI, Balandin VV, Bragov AM (2013) Quasi-steady motion of a solid in a loose soil with developed cavitation. Dokl Phys 58:309–313

    Article  ADS  Google Scholar 

  33. Penumadu D, Kim F (2015) Multimodal radiation based tomography and diffraction of granular materials using neutrons and photons and instrumented penetration mechanics. In: Iskander M, Bless S, Omidvar M (eds) Rapid penetration into granular media. Elsevier, New York

    Google Scholar 

  34. Parab ND, Claus B, Hudspeth MC, Black JT, Mondal A, Sun J, Fezzas K, Xiao X, Luo SN, Chen W (2014) Experimental assessment of fracture in individual sand particles at different loading rates. Int J Impact Eng 68:8–14

    Article  Google Scholar 

  35. Allen WA, Mayfield EB, Morrison HL (1957) Dynamics of a projectile penetration sand. J Appl Phys 28:370–376

    Article  ADS  Google Scholar 

  36. Cooper WL, Breaux BA (2010) Grain fracture in rapid particulate media deformation and a particulate media research roadmap from the PMEE workshops. Int J Fract 162:137–150

    Article  Google Scholar 

  37. Bless S, Omidvar M, Iskander M (2017) Poncelet coefficients for dry sand. In: American Physical Society topical conference on shock compression of condensed matter, St Louis, MO

    Google Scholar 

  38. Meyerhof GG (1976) Bearing capacity and settlement of pile foundations. J Geotech Eng ASCE 102:195–228

    Google Scholar 

  39. Das BM (2007) Principles of foundation engineering. Chapter 11.7, 6th edn. Cengage Learning, Stamford

    Google Scholar 

  40. Clark AH, Behringer RP (2013) Granular impact model as an energy-depth relation. Europhys Lett 101:64001

    Article  ADS  Google Scholar 

  41. Omidvar M, Iskander M, Bless S (2014) Response of granular media to rapid penetration. Int JImpact Eng 66:60–82. https://doi.org/10.1016/j.ijimpeng.2013.12.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Omidvar, M., Bless, S., Iskander, M. (2019). Recent Insights into Penetration of Sand and Similar Granular Materials. In: Vogler, T., Fredenburg, D. (eds) Shock Phenomena in Granular and Porous Materials. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-030-23002-9_5

Download citation

Publish with us

Policies and ethics