Skip to main content

Planetary Impact Processes in Porous Materials

  • Chapter
  • First Online:
Shock Phenomena in Granular and Porous Materials

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

Abstract

Porous materials abound in the Solar System. Primordial solids accreted gently from dust into fragile, high-porosity aggregates; many asteroids have been disrupted and reaccreted as loosely bound porous rubble piles; and the crusts of airless, unprotected planetary surfaces are heavily fractured from prolonged bombardment of asteroids and comets. High porosity attenuates shock propagation and localizes shock heating, which has several important implications for the evolution of planetary surfaces. The high porosity of early solids implies that shock heating from collisions may have been sufficient to lithify the compacted material, mobilize fluids, cause crystallographic transformation and even generate significant volumes of melt. Internal porosity in asteroids increases their resistance to collisional disruption and reduces momentum transfer efficiency by virtue of enhanced shock attenuation and reduced particle velocity. This enhances accretional efficiency and lengthens the collisional lifespan of asteroids, but at the same time makes them harder to deflect by kinetic impact. Porosity in the crusts and soils of planetary surfaces has a similar effect on the impact process, reducing the speed and mass of ejecta as well as the ultimate size of the crater. Constraining the influence of subsurface porosity variations on impact crater size is a crucial step in using crater populations to estimate impactor flux, date planetary surfaces and infer subsurface properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A fifth process, spallation, can be important, but is not relevant to the present discussion. Spallation occurs when the compressive shock reflects from the target surface in tension. If the tensile stress exceeds the strength of the target material, thin plate-shaped fragments are ejected from the periphery of the crater [14,15,16].

  2. 2.

    The crush strength is not as well defined as, say, the tensile strength of a brittle material. In actuality porous geological materials crush over a wide range of pressure, with more void space being eliminated as pressure increases. This has been described using the so-called P-α model [27] or a modified version referred to as the 𝜖-α model [28]. We refer to a single crush strength measure here as a way to simply characterize the material’s resistance to compaction. The specific values of crush strength cited refer to the stress that compresses the material 50% of the way to zero porosity [18].

  3. 3.

    The original definition of π 2 included a multiplicative factor of 3.22, which is not used here.

  4. 4.

    This is strictly true only when the target strength does not itself depend on size or timescales.

  5. 5.

    See discussion of mesoscale modeling in chapter by Vogler and Fredenburg.

References

  1. Blum J, Wurm G (2008) The growth mechanisms of macroscopic bodies in protoplanetary disks. Ann Rev Astron Astrophys 46(1):21–56. https://doi.org/10.1146/annurev.astro.46.060407.145152

    Article  ADS  Google Scholar 

  2. Bland PA, Collins GS, Davison TM, Abreu NM, Ciesla FJ, Muxworthy AR, Moore J (2014) Pressure–temperature evolution of primordial solar system solids during impact-induced compaction. Nat Commun 5. https://doi.org/10.1038/ncomms6451

  3. Britt DT, Yeomans D, Housen K, Consolmagno G (2002) Asteroid density, porosity, and structure. In: Asteroids III, Bottke Jr WF, Cellino A, Paolicchi P, Binzel RP (eds) University of Arizona Press, Tucson, pp 485–500

    Google Scholar 

  4. Consolmagno GJ, Britt DT, Macke RJ (2008) The significance of meteorite density and porosity. Chemie der Erde - Geochem 68(1):1–29. https://doi.org/10.1016/j.chemer.2008.01.003

    Article  ADS  Google Scholar 

  5. Asphaug E, Ryan EV, Zuber MT (2002) Asteroid interiors. In: Asteroids III, Bottke Jr WF, Cellino A, Paolicchi P, Binzel RP (eds) University of Arizona Press, Tucson, pp 463–484

    Google Scholar 

  6. Sasso MR, Macke RJ, Boesenberg JS, Britt DT, Rivers ML, Ebel DS, Friedrich JM (2009) Incompletely compacted equilibrated ordinary chondrites. Meteorit Planet Sci 44(11):1743–1753. https://doi.org/10.1111/j.1945-5100.2009.tb01204.x

    Article  ADS  Google Scholar 

  7. McKay DS, Heiken G, Basu A, Blanford G, Simon S, Reedy R, French BM, Papike J (1991) The Lunar Regolith. In: Heiken GH, Vaniman DT, French BM (eds) Lunar source book. Cambridge University Press, Cambridge

    Google Scholar 

  8. Wieczorek MA, Neumann GA, Nimmo F, Kiefer WS, Taylor GJ, Melosh HJ, Phillips RJ, Solomon SC, Andrews-Hanna JC, Asmar SW, Konopliv AS, Lemoine FG, Smith DE, Watkins MM, Williams JG, Zuber MT (2013) The crust of the moon as seen by GRAIL. Science 339(6120):671–675. https://doi.org/10.1126/science.1231530

    Article  ADS  Google Scholar 

  9. Besserer J, Nimmo F, Wieczorek MA, Weber RC, Kiefer WS, McGovern PJ, Andrews-Hanna JC, Smith DE, Zuber MT (2014) GRAIL gravity constraints on the vertical and lateral density structure of the lunar crust. Geophys Res Lett 41(16):5771–5777. https://doi.org/10.1002/2014GL060240

    Article  ADS  Google Scholar 

  10. Soderblom JM, Evans AJ, Johnson BC, Melosh HJ, Miljković K, Phillips RJ, Andrews-Hanna JC, Bierson CJ, Head JW, Milbury C, Neumann GA, Nimmo F, Smith DE, Solomon SC, Sori MM, Wieczorek MA, Zuber MT (2015) The fractured Moon: production and saturation of porosity in the lunar highlands from impact cratering. Geophys Res Lett 42(17):2015GL065022. https://doi.org/10.1002/2015GL065022

    Article  ADS  Google Scholar 

  11. Milbury C, Johnson BC, Melosh HJ, Collins GS, Blair DM, Soderblom JM, Nimmo F, Bierson CJ, Phillips RJ, Zuber MT (2015) Preimpact porosity controls the gravity signature of lunar craters. Geophys Res Lett 42(22):2015GL066198. https://doi.org/10.1002/2015GL066198

    Article  ADS  Google Scholar 

  12. Sharp TG, de Carli PS (2006) Shock Effects in Meteorites. In: Meteorites and the Early solar system II, pp 653–677

    Google Scholar 

  13. Carry B (2012) Density of asteroids. Planet Space Sci 73(1):98–118. https://doi.org/10.1016/j.pss.2012.03.009

    Article  ADS  Google Scholar 

  14. Melosh HJ (1984) Impact ejection, spallation, and the origin of meteorites. Icarus 59(2):234–260. https://doi.org/10.1016/0019-1035(84)90026-5

    Article  ADS  Google Scholar 

  15. Polanskey CA, Ahrens TJ (1990) Impact spallation experiments: fracture patterns and spall velocities. Icarus 87(1):140–155. https://doi.org/10.1016/0019-1035(90)90025-5

    Article  ADS  Google Scholar 

  16. Holsapple KA, Housen KR (2013) The third regime of cratering: spall Craters. In: Lunar and planetary science conference, vol 44, p 2733

    ADS  Google Scholar 

  17. Stöffler D, Gault DE, Wedekind J, Polkowski G (1975) Experimental hypervelocity impact into quartz sand: distribution and shock metamorphism of ejecta. J Geophys Res 80(29):4062–4077. https://doi.org/10.1029/JB080i029p04062

    Article  ADS  Google Scholar 

  18. Housen K, Sweet W, Holsapple K (2018) Impacts into porous asteroids. Icarus 300:72–96. https://doi.org/10.1016/j.icarus.2017.08.019

    Article  ADS  Google Scholar 

  19. Michikami T, Moriguchi K, Hasegawa S, Fujiwara A (2007) Ejecta velocity distribution for impact cratering experiments on porous and low strength targets. Planet Space Sci 55(1–2):70–88. https://doi.org/10.1016/j.pss.2006.05.002

    Article  ADS  Google Scholar 

  20. Okamoto T, Nakamura AM, Hasegawa S (2015) Impact experiments on highly porous targets: Cavity morphology and disruption thresholds in the strength regime. Planet Space Sci 107:36–44. https://doi.org/10.1016/j.pss.2014.08.008

    Article  ADS  Google Scholar 

  21. Flynn GJ, Durda DD, Patmore EB, Clayton AN, Jack SJ, Lipman MD, Strait MM (2015) Hypervelocity cratering and disruption of porous pumice targets: implications for crater production, catastrophic disruption, and momentum transfer on porous asteroids. Planet Space Sci 107:64–76. https://doi.org/10.1016/j.pss.2014.10.007

    Article  ADS  Google Scholar 

  22. Okamoto T, Nakamura AM (2017) Scaling of impact-generated cavity-size for highly porous targets and its application to cometary surfaces. Icarus 292:234–244. https://doi.org/10.1016/j.icarus.2017.01.007

    Article  ADS  Google Scholar 

  23. Hörz F, Bastien R, Borg J, Bradley JP, Bridges JC, Brownlee DE, Burchell MJ, Chi M, Cintala MJ, Dai ZR, Djouadi Z, Dominguez G, Economou TE, Fairey SAJ, Floss C, Franchi IA, Graham GA, Green SF, Heck P, Hoppe P, Huth J, Ishii H, Kearsley AT, Kissel J, Leitner J, Leroux H, Marhas K, Messenger K, Schwandt CS, See TH, Snead C, Stadermann FJ, Stephan T, Stroud R, Teslich N, Trigo-Rodríguez JM, Tuzzolino AJ, Troadec D, Tsou P, Warren J, Westphal A, Wozniakiewicz P, Wright I, Zinner E (2006) Impact features on stardust: implications for Comet 81p/Wild 2 Dust. Science 314(5806):1716–1719, https://doi.org/10.1126/science.1135705

    Article  ADS  Google Scholar 

  24. Niimi R, Kadono T, Arakawa M, Yasui M, Dohi K, Nakamura AM, Iida Y, Tsuchiyama A (2011) In situ observation of penetration process in silica aerogel: Deceleration mechanism of hard spherical projectiles. Icarus 211(2):986–992. https://doi.org/10.1016/j.icarus.2010.11.005

    Article  ADS  Google Scholar 

  25. Luther R, Artemieva N, Ivanova M, Lorenz C, Wünnemann K (2017) Snow carrots after the Chelyabinsk event and model implications for highly porous solar system objects. Meteorit Planet Sci 52(5):979–999. https://doi.org/10.1111/maps.12831

    Article  ADS  Google Scholar 

  26. Housen KR, Holsapple KA (2012) Craters without ejecta. Icarus 219(1):297–306. https://doi.org/10.1016/j.icarus.2012.02.030

    Article  ADS  Google Scholar 

  27. Carroll MM, Holt AC (1972) Static and dynamic pore-collapse relations for ductile porous materials. J Appl Phys 43(4):1626–1636

    Article  ADS  Google Scholar 

  28. Wünnemann K, Collins GS, Melosh HJ (2006) A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets. Icarus 180(2):514–527. https://doi.org/10.1016/j.icarus.2005.10.013

    Article  ADS  Google Scholar 

  29. Housen KR, Holsapple KA, Voss ME (1999) Compaction as the origin of the unusual craters on the asteroid Mathilde. Nature 402(6758):155–157. https://doi.org/10.1038/45985

    Article  ADS  Google Scholar 

  30. Thomas PC, Armstrong JW, Asmar SW, Burns JA, Denk T, Giese B, Helfenstein P, Iess L, Johnson TV, McEwen A, Nicolaisen L, Porco C, Rappaport N, Richardson J, Somenzi L, Tortora P, Turtle EP, Veverka J (2007) Hyperion’s sponge-like appearance. Nature 448(7149):50–56. https://doi.org/10.1038/nature05779

    Article  ADS  Google Scholar 

  31. Holsapple KA, Schmidt RM (1987) Point source solutions and coupling parameters in cratering mechanics. J Geophys Res 92(B7):6350–6376. https://doi.org/10.1029/JB092iB07p06350

    Article  ADS  Google Scholar 

  32. Holsapple KA (1993) The scaling of impact processes in planetary sciences. Ann Rev Earth Planet Sci 21:333–373

    Article  ADS  Google Scholar 

  33. Güldemeister N, Wünnemann K, Poelchau M (2015) Scaling impact crater dimensions in cohesive rock by numerical modeling and laboratory experiments. In: Osinski GR, Kring DA (eds) Large meteorite impacts and planetary evolution V. Geological Society of America

    Google Scholar 

  34. Schmidt RM, Housen KR (1987) Some recent advances in the scaling of impact and explosion cratering. Int J Impact Eng 5(1–4):543–560. https://doi.org/10.1016/0734-743X(87)90069-8

    Article  ADS  Google Scholar 

  35. Yamamoto S, Wada K, Okabe N, Matsui T (2006) Transient crater growth in granular targets: an experimental study of low velocity impacts into glass sphere targets. Icarus 183(1):215–224. https://doi.org/10.1016/j.icarus.2006.02.002

    Article  ADS  Google Scholar 

  36. Wünnemann K, Nowka, D, Collins, GS, Elbeshausen, D, Bierhaus, M (2011) Scaling of impact crater formation on planetary surfaces – insights from numerical modeling. In: Proceedings of the 11th Hypervelocity Impact Symposium 2010. Fraunhofer Verlag, Stuttgart/Freiburg, p 828

    Google Scholar 

  37. Yasui M, Arakawa M, Hasegawa S, Fujita Y, Kadono T (2012) In situ flash X-ray observation of projectile penetration processes and crater cavity growth in porous gypsum target analogous to low-density asteroids. Icarus 221(2):646–657. https://doi.org/10.1016/j.icarus.2012.08.018

    Article  ADS  Google Scholar 

  38. Housen KR, Holsapple KA (2003) Impact cratering on porous asteroids. Icarus 163(1):102–119. https://doi.org/10.1016/S0019-1035(03)00024-1

    Article  ADS  Google Scholar 

  39. Asphaug E, Collins G, Jutzi M (2015) Global scale impacts. In: Michel P, Demeo FE, Bottke WF (eds) Asteroids IV, University of Arizona Press, Tucson, pp 661–678. arXiv: 1504.02389

    Google Scholar 

  40. Michel P, Benz W, Tanga P, Richardson DC (2001) Collisions and gravitational reaccumulation: forming asteroid families and satellites. Science 294:1696–1700. https://doi.org/10.1126/science.1065189

    Article  ADS  Google Scholar 

  41. Michel P, Benz W, Richardson DC (2003) Disruption of fragmented parent bodies as the origin of asteroid families. Nature 421:608–611

    Article  ADS  Google Scholar 

  42. Leinhardt ZM, Stewart ST (2012) Collisions between Gravity-dominated Bodies. I. Outcome Regimes and Scaling Laws. Astrophys J 745:79. https://doi.org/10.1088/0004-637X/745/1/79, 1106.6084

    Article  ADS  Google Scholar 

  43. Holsapple K, Giblin I, Housen K, Nakamura A, Ryan E (2002) Asteroid impacts: laboratory experiments and scaling laws. In: Asteroids III, Bottke Jr WF, Cellino A, Paolicchi P, Binzel RP (eds) University of Arizona Press, Tucson, pp 443–462

    Google Scholar 

  44. Nakamura AM, Hiraoka K, Yamashita Y, Machii N (2009) Collisional disruption experiments of porous targets. Planet Space Sci 57(2):111–118. https://doi.org/10.1016/j.pss.2008.07.027

    Article  ADS  Google Scholar 

  45. Ryan EV, Hartmann WK, Davis DR (1991) Impact experiments 3: Catastrophic fragmentation of aggregate targets and relation to asteroids. Icarus 94(2):283–298. https://doi.org/10.1016/0019-1035(91)90228-L

    Article  ADS  Google Scholar 

  46. Love SG, Hörz F, Brownlee DE (1993) Target porosity effects in impact cratering and collisional disruption. Icarus 105(1):216–224. https://doi.org/10.1006/icar.1993.1119

    Article  ADS  Google Scholar 

  47. Setoh M, Nakamura AM, Michel P, Hiraoka K, Yamashita Y, Hasegawa S, Onose N, Okudaira K (2010) High- and low-velocity impact experiments on porous sintered glass bead targets of different compressive strengths: outcome sensitivity and scaling. Icarus 205(2):702–711. https://doi.org/10.1016/j.icarus.2009.08.012

    Article  ADS  Google Scholar 

  48. Nakamura A, Suguiyama K, Fujiwara A (1992) Velocity and spin of fragments from impact disruptions. Icarus 100(1):127–135. https://doi.org/10.1016/0019-1035(92)90023-Z

    Article  ADS  Google Scholar 

  49. Okamoto C, Arakawa M (2009) Experimental study on the collisional disruption of porous gypsum spheres. Meteorit Planet Sci 44:1947–1954. https://doi.org/10.1111/j.1945-5100.2009.tb02004.x

    Article  ADS  Google Scholar 

  50. Nakamura AM, Yamane F, Okamoto T, Takasawa S (2015) Size dependence of the disruption threshold: laboratory examination of millimeter-centimeter porous targets. Planet Space Sci 107:45–52. https://doi.org/10.1016/j.pss.2014.07.011

    Article  ADS  Google Scholar 

  51. Flynn GJ, Durda DD (2004) Chemical and mineralogical size segregation in the impact disruption of inhomogeneous, anhydrous meteorites. Planet Space Sci 52(12):1129–1140. https://doi.org/10.1016/j.pss.2004.07.010

    Article  ADS  Google Scholar 

  52. Cintala MJ, Hörz F (2008) Experimental impacts into chondritic targets, part i: Disruption of an l6 chondrite by multiple impacts. Meteorit Planet Sci 43(4):771–803. https://doi.org/10.1111/j.1945-5100.2008.tb00684.x

    Article  ADS  Google Scholar 

  53. Jutzi M, Michel P, Benz W, Richardson DC (2010) Fragment properties at the catastrophic disruption threshold: the effect of the parent body’s internal structure. Icarus 207(1):54–65. https://doi.org/10.1016/j.icarus.2009.11.016

    Article  ADS  Google Scholar 

  54. Housen KR, Holsapple KA (1999) Scale effects in strength-dominated collisions of rocky asteroids. Icarus 142(1):21–33. https://doi.org/10.1006/icar.1999.6206

    Article  ADS  Google Scholar 

  55. Popova O, Borovicka J, Hartmann WK, Spurný P, Gnos E, Nemtchinov I, Trigo-Rodríguez JM (2011) Very low strengths of interplanetary meteoroids and small asteroids. Meteorit Planet Sci 46(10):1525–1550. https://doi.org/10.1111/j.1945-5100.2011.01247.x

    Article  ADS  Google Scholar 

  56. Housen KR, Holsapple KA (1990) On the fragmentation of asteroids and planetary satellites. Icarus 84(1):226–253. https://doi.org/10.1016/0019-1035(90)90168-9

    Article  ADS  Google Scholar 

  57. Jutzi M, Benz W, Michel P (2008) Numerical simulations of impacts involving porous bodies: I. Implementing sub-resolution porosity in a 3d SPH hydrocode. Icarus 198(1):242–255. https://doi.org/10.1016/j.icarus.2008.06.013

    Article  ADS  Google Scholar 

  58. Weibull W (1939) A statistical theory of the strength of materials. Ingvetensk Akad Handl 151:1–45

    Google Scholar 

  59. Davis DR, Ryan EV (1990) On collisional disruption - experimental results and scaling laws. Icarus 83:156–182. https://doi.org/10.1016/0019-1035(90)90012-X

    Article  ADS  Google Scholar 

  60. Jutzi M (2015) SPH calculations of asteroid disruptions: the role of pressure dependent failure models. Planet Space Sci 107:3–9. https://doi.org/10.1016/j.pss.2014.09.012

    Article  ADS  Google Scholar 

  61. Jutzi M, Michel P, Hiraoka K, Nakamura AM, Benz W (2009) Numerical simulations of impacts involving porous bodies: II. Comparison with laboratory experiments. Icarus 201(2):802–813. https://doi.org/10.1016/j.icarus.2009.01.018

    Article  ADS  Google Scholar 

  62. Housen KR, Holsapple KA (2003) Impact cratering on porous asteroids. Icarus 163:102–119. https://doi.org/10.1016/S0019-1035(03)00024-1

    Article  ADS  Google Scholar 

  63. Housen KR, Holsapple KA (2011) Ejecta from impact craters. Icarus 211(1):856–875. https://doi.org/10.1016/j.icarus.2010.09.017

    Article  ADS  Google Scholar 

  64. Hartmann WK (1985) Impact experiments. Icarus 63(1):69–98. https://doi.org/10.1016/0019-1035(85)90021-1

    Article  ADS  Google Scholar 

  65. Cintala MJ, Berthoud L, Hörz F (1999) Ejection-velocity distributions from impacts into coarse-grained sand. Meteorit Planet Sci 34(4):605–623. https://doi.org/10.1111/j.1945-5100.1999.tb01367.x

    Article  ADS  Google Scholar 

  66. Ahrens TJ, Harris AW (1992) Deflection and fragmentation of near-Earth asteroids. Nature 360(6403):429–433. https://doi.org/10.1038/360429a0

    Article  ADS  Google Scholar 

  67. Holsapple KA, Housen KR (2012) Momentum transfer in asteroid impacts. I. Theory and scaling. Icarus 221(2):875–887. https://doi.org/10.1016/j.icarus.2012.09.022

    Article  Google Scholar 

  68. Cheng AF, Michel P, Jutzi M, Rivkin AS, Stickle A, Barnouin O, Ernst C, Atchison J, Pravec P, Richardson DC (2016) Asteroid impact and deflection assessment mission: kinetic impactor. Planet Space Sci 121:27–35. https://doi.org/10.1016/j.pss.2015.12.004

    Article  ADS  Google Scholar 

  69. Jutzi M, Michel P (2014) Hypervelocity impacts on asteroids and momentum transfer I. Numerical simulations using porous targets. Icarus 229:247–253. https://doi.org/10.1016/j.icarus.2013.11.020

    Google Scholar 

  70. Walker JD, Chocron S, Durda DD, Grosch DJ, Movshovitz N, Richardson DC, Asphaug E (2012) Momentum enhancement from large impacts into granite. In: Asteroids, Comets, Meteors 2012, LPI Contributions, vol 1667, p 6086

    Google Scholar 

  71. Housen KR, Holsapple KA (2015) Experimental measurements of momentum transfer in hypervelocity collisions. In: Lunar and planetary science conference, lunar and planetary science conference, vol 46, p 2894

    ADS  Google Scholar 

  72. Yanagisawa M, Hasegawa S (2000) Momentum transfer in oblique impacts: implications for asteroid rotations. Icarus 146:270–288. https://doi.org/10.1006/icar.2000.6389

    Article  ADS  Google Scholar 

  73. Wünnemann K, Zhu MH, Stöffler D (2016) Impacts into quartz sand: Crater formation, shock metamorphism, and ejecta distribution in laboratory experiments and numerical models. Meteorit Planet Sci pp 1762–1794. https://doi.org/10.1111/maps.12710

    Article  ADS  Google Scholar 

  74. Kieffer SW (1971) Shock metamorphism of the Coconino Sandstone at Meteor Crater, Arizona. J Geophys Res 76(23):5449–5473. https://doi.org/10.1029/JB076i023p05449

    Article  ADS  Google Scholar 

  75. Kieffer SW, Phakey PP, Christie JM (1976) Shock processes in porous quartzite: transmission electron microscope observations and theory. Contrib Mineral Petrol 59(1):41–93. https://doi.org/10.1007/BF00375110

    Article  ADS  Google Scholar 

  76. Grieve RAF, Langenhorst F, Stöffler D (1996) Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience*. Meteorit Planet Sci 31(1):6–35. https://doi.org/10.1111/j.1945-5100.1996.tb02049.x

    Article  ADS  Google Scholar 

  77. Stöffler D, Grieve RAF (2007) Impactites, a proposal on behalf of the IUGS subcommission on the systematics of metamorphic rocks. In: Fettes D, Desmons J (eds) Metamorphic rocks–a classification and glossary of terms. Cambridge University Press, Cambridge, pp 82–92

    Google Scholar 

  78. Kowitz A, Güldemeister N, Schmitt RT, Reimold WU, Wünnemann K, Holzwarth A (2016) Revision and recalibration of existing shock classifications for quartzose rocks using low-shock pressure (2.5–20 GPa) recovery experiments and mesoscale numerical modeling. Meteorit Planet Sci 51(10):1741–1761. https://doi.org/10.1111/maps.12712

    Article  ADS  Google Scholar 

  79. Stöffler D, Keil K, Scott ERD (1991) Shock metamorphism of ordinary chondrites. Geochim Cosmochim Acta 55(12):3845–3867. https://doi.org/10.1016/0016-7037(91)90078-J

    Article  ADS  Google Scholar 

  80. Kowitz A, Güldemeister N, Reimold WU, Schmitt RT, Wünnemann K (2013) Diaplectic quartz glass and SiO2 melt experimentally generated at only 5 GPa shock pressure in porous sandstone: Laboratory observations and meso-scale numerical modeling. Earth Planet Sci Lett 384:17–26. https://doi.org/10.1016/j.epsl.2013.09.021

    Article  ADS  Google Scholar 

  81. Güldemeister N, Wünnemann K, Durr N, Hiermaier S (2013) Propagation of impact-induced shock waves in porous sandstone using mesoscale modeling. Meteorit Planet Sci 48(1):115–133. https://doi.org/10.1111/j.1945-5100.2012.01430.x

    Article  ADS  Google Scholar 

  82. Davison TM, Collins GS, Bland PA (2016) Mesoscale modeling of impact compaction of primitive solar system solids. ApJ 821(1):68. https://doi.org/10.3847/0004-637X/821/1/68

    Article  ADS  Google Scholar 

  83. Forman LV, Bland PA, Timms NE, Collins GS, Davison TM, Ciesla FJ, Benedix GK, Daly L, Trimby PW, Yang L, Ringer SP (2016) Hidden secrets of deformation: impact-induced compaction within a CV chondrite. Earth Planet Sci Lett 452. https://doi.org/10.1016/j.epsl.2016.07.050

    Article  ADS  Google Scholar 

  84. Collins G, Melosh H, Wünnemann K (2011) Improvements to the 𝜖-α porous compaction model for simulating impacts into high-porosity solar system objects. Int J Impact Eng 38(6):434–439. https://doi.org/10.1016/j.ijimpeng.2010.10.013

    Article  Google Scholar 

  85. Schulte P, Alegret L, Arenillas I, Arz JA, Barton PJ, Bown PR, Bralower TJ, Christeson GL, Claeys P, Cockell CS, Collins GS, Deutsch A, Goldin TJ, Goto K, Grajales-Nishimura JM, Grieve RAF, Gulick SPS, Johnson KR, Kiessling W, Koeberl C, Kring DA, MacLeod KG, Matsui T, Melosh J, Montanari A, Morgan JV, Neal CR, Nichols DJ, Norris RD, Pierazzo E, Ravizza G, Rebolledo-Vieyra M, Reimold WU, Robin E, Salge T, Speijer RP, Sweet AR, Urrutia-Fucugauchi J, Vajda V, Whalen MT, Willumsen PS (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327(5970):1214–1218. https://doi.org/10.1126/science.1177265

    Article  ADS  Google Scholar 

  86. Stewart ST, Ahrens TJ (1999) Porosity effects on impact processes in solar system materials. In: Lunar and planetary science conference

    Google Scholar 

  87. Hörz F, Cintala MJ, See TH, Le L (2005) Shock melting of ordinary chondrite powders and implications for asteroidal regoliths. Meteorit Planet Sci 40(9–10):1329–1346. https://doi.org/10.1111/j.1945-5100.2005.tb00404.x

    Article  ADS  Google Scholar 

  88. Wünnemann K, Collins GS, Osinski GR (2008) Numerical modelling of impact melt production in porous rocks. Earth Planet Sci Lett 269(3–4):530–539. https://doi.org/10.1016/j.epsl.2008.03.007

    Article  ADS  Google Scholar 

  89. Davison TM, Collins GS, Ciesla FJ (2010) Numerical modelling of heating in porous planetesimal collisions. Icarus 208(1):468–481. https://doi.org/10.1016/j.icarus.2010.01.034

    Article  ADS  Google Scholar 

  90. Osinski GR, Grieve RAF, Collins GS, Marion C, Sylvester P (2008) The effect of target lithology on the products of impact melting. Meteorit Planet Sci 43(12):1939–1954. https://doi.org/10.1111/j.1945-5100.2008.tb00654.x

    Article  ADS  Google Scholar 

  91. Kraus RG, Senft LE, Stewart ST (2011) Impacts onto H2o ice: Scaling laws for melting, vaporization, excavation, and final crater size. Icarus 214(2):724–738. https://doi.org/10.1016/j.icarus.2011.05.016

    Article  ADS  Google Scholar 

  92. Pilkington M, Grieve RAF (1992) The geophysical signature of terrestrial impact craters. Rev Geophys 30(2):161–181. https://doi.org/10.1029/92RG00192

    Article  ADS  Google Scholar 

  93. Collins GS (2014) Numerical simulations of impact crater formation with dilatancy. J Geophys Res Planets p 2014JE004708. https://doi.org/10.1002/2014JE004708

    ADS  Google Scholar 

  94. Bierson CJ, Phillips RJ, Nimmo F, Besserer J, Milbury C, Keane JT, Soderblom JM, Zuber MT (2016) Interactions between complex craters and the lunar crust: analysis using GRAIL data. J Geophys Res Planets 121(8):2016JE005090. https://doi.org/10.1002/2016JE005090

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gareth S. Collins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Collins, G.S., Housen, K.R., Jutzi, M., Nakamura, A.M. (2019). Planetary Impact Processes in Porous Materials. In: Vogler, T., Fredenburg, D. (eds) Shock Phenomena in Granular and Porous Materials. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-030-23002-9_4

Download citation

Publish with us

Policies and ethics