Skip to main content

Equation of State Modeling for Porous Materials

  • Chapter
  • First Online:
Shock Phenomena in Granular and Porous Materials

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

Abstract

This chapter describes the theoretical equations of state (EOSs) for porous and granular materials. In principle the EOS for a porous/granular material is identical to the EOS for the equivalent non-porous material; however, the requirement that the EOS must provide a realistic model of the material in its porous/granular state presents additional challenges. Broadly these challenges are first that the regions of thermodynamic phase space of interest are poorly described by standard wide-ranging EOS models and second, accurate measurement of materials properties that are routinely used to constrain an EOS can be more difficult to obtain. This chapter describes in detail the challenges and methods for EOS generation of porous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crockett S (2009) Fundamentals of SESAME equations of state. Los Alamos National Laboratory Tech. Reps. LA-UR 08-03679, LA-UR 08-03860, LA-UR 08-03681, LA-UR 09-00450, LA-UR 09-00451

    Google Scholar 

  2. Boettger JC (2013) Theoretical equations of state for porous/granular materials. Los Alamos National Laboratory Tech. Rep. LA-UR-13-24560

    Google Scholar 

  3. McQueen RG, Marsh SP, Taylor JW, Fritz JN, Carter WJ (1970) In: Kinslow R (ed) High-velocity impact phenomena. Academic, New York

    Google Scholar 

  4. Fredenburg DA, Koller DD, Rigg PA, Scharff RJ (2013) High-fidelity Hugoniot analysis of porous materials. Rev Sci Instrum 84:013903

    Article  ADS  Google Scholar 

  5. Knudson MD, Lemke RW (2013) Shock response of low-density silica aerogel in the multi-Mbar regime. J Appl Phys 114:053510

    Article  ADS  Google Scholar 

  6. Boettger JC (2010) Data requirements for a sesame EOS. Los Alamos National Laboratory Tech. Rep. LA-UR-10-08072

    Google Scholar 

  7. Basic Research Needs for High Energy Density Laboratory Physics, Report on the Workshop on High Energy Density Laboratory Physics Research Needs Nov. 15–18 2009 (2010) U.S. Department of Energy, Office of Science and National Nuclear Security Administration

    Google Scholar 

  8. Boettger JC, Honnell KG, Peterson JH, Greeff C, Crockett S (2012) Tabular equation of state for gold. In: AIP conference proceedings, vol 1426, p 812

    ADS  Google Scholar 

  9. Graziani F, Desjarlais MP, Redmer R, Trickey SB (2014) Frontiers and challenges in warm dense matter. Lecture notes in computational science and engineering, vol 96. Springer, Berlin

    Book  Google Scholar 

  10. Falk K, McCoy CA, Fryer CL, Greeff CW, Hungerford AL, Montgomery DS, Schmidt DW, Sheppard DG, Williams JR, Boehly TR, Benage JF (2014) Temperature measurements of shocked silica aerogel foam. Phys Rev E 90:033107

    Article  ADS  Google Scholar 

  11. Weck PF, Cochrane KR, Root S, Lane JMD, Shulenburger L, Carpenter JH, Sjostrom T, Mattsson TR, Vogler TJ (2018) Shock compression of strongly correlated oxides: a liquid-regime equation of state for cerium(IV) oxide. Phys Rev B 97:125106

    Article  ADS  Google Scholar 

  12. Zemansky MW, Dittman RH (1997) Heat and thermodynamics, 7th edn. McGraw-Hill, New York

    Google Scholar 

  13. Anderson OL (1995) Equations of state for geophysics and ceramic science. Oxford University Press, Oxford

    Google Scholar 

  14. Zel’dovich YB, Raizer YP (2002) Physics of shock waves and high-temperature hydrodynamic phenomena. Dover, Mineola

    Google Scholar 

  15. Eliezer S, Ghatak A, Hora H (2002) Fundamentals of equation of state. World Scientific, Singapore

    Book  Google Scholar 

  16. Wallace DC (2002) Statistical physics of crystals and liquids. World Scientific, Singapore

    MATH  Google Scholar 

  17. Godwal BK, Sikka SK, Chidambaram R (1983) Equation of state theories of condensed matter up to about 10 TPa. Phys Rep 102:121

    Article  ADS  Google Scholar 

  18. Sengers JV, Kayser RF, Peters CJ, White HJ (2000) Equations of state for fluids and fluid mixtures. Experimental thermodynamics, vol 5. Elsevier, Amsterdam

    Google Scholar 

  19. Gathers GR (1994) Selected topics in shock wave physics and equation of state modeling. World Scientific, Singapore

    Book  Google Scholar 

  20. Zharkov VN, Kalinin VA (1971) Equations of state for solids at high pressures and temperatures. Springer, New York

    Book  Google Scholar 

  21. Brush SG (1967) In: Rouse CA (ed) Progress in high temperature physics and chemistry, vol 1. Pergamon Press, Oxford, p 1

    Google Scholar 

  22. Hakel P, Kilcrease DP (2004) Atomic processes in plasmas. In: Cohen J, Mazevet S, Kilcrease D (eds) AIP conference proceedings. AIP, New York, p 168

    Google Scholar 

  23. Pimentel DA (2016) EOSPAC user’ manual: version 6.3. Los Alamos National Laboratory Tech. Rep. LA-UR-14-29289

    Google Scholar 

  24. Lyon SP, Johnson JD (1992) SESAME: The Los Alamos National Laboratory Equation of State Database. Los Alamos National Laboratory Tech. Rep. LA-UR-92-3407

    Google Scholar 

  25. Kerley GI (1991) User’s manual for PANDA II: a computer code for calculating equations of state. Sandia Report SAND88-2291

    Google Scholar 

  26. Holzapfel WB (1998) Equations of state for solids under strong compression. Int J High Pressure Res 16:81

    Article  ADS  Google Scholar 

  27. Birch F (1977) Isotherms of the rare gas solids. J Phys Chem Solids 38:175

    Article  ADS  Google Scholar 

  28. Jeanloz R (1981) Finite-strain equation of state for high-pressure phases. Geophys Res Lett 8:1219

    Article  ADS  Google Scholar 

  29. Knudson MD, Desjarlais MP (2009) Shock compression of Quartz to 1.6 TPa: redefining a pressure standard. Phys Rev Lett 103:225501

    Google Scholar 

  30. Kerley GI (1981) User’s manual for PANDA: a computer code for calculating equations of state. Los Alamos National Laboratory Tech. Rep. LA-8833-M

    Google Scholar 

  31. Cowan RD, Ashkin J (1957) Extension of the Thomas-Fermi-Dirac statistical theory of the atom to finite temperatures. Phys Rev 105:144

    Article  ADS  MathSciNet  Google Scholar 

  32. Feynman RP, Metropolis N, Teller E (1949) Equations of state of elements based on the generalized Fermi-Thomas theory. Phys Rev 75:1561

    Article  ADS  Google Scholar 

  33. Perrot F (1979) Gradient correction to the statistical electronic free energy at nonzero temperatures: application to equation-of-state calculations. Phys Rev A 20:586

    Article  ADS  Google Scholar 

  34. Liberman DA (1979) Self-consistent field model for condensed matter. Phys Rev B 20:4981

    Article  ADS  Google Scholar 

  35. Wilson B, Sonnad V, Sterne P, Isaacs W (2006) Purgatorio – a new implementation of the Inferno algorithm. J Quant Spectrosc Radiat Transf 99:658

    Article  ADS  Google Scholar 

  36. Starrett CE (2015) A Green’s function quantum average atom model. High Energy Density Phys 16:18

    Article  ADS  Google Scholar 

  37. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, Fabris S, Fratesi G, de Gironcoli S, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502

    Article  Google Scholar 

  38. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953

    Article  ADS  Google Scholar 

  39. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048

    Article  ADS  Google Scholar 

  40. Wallace DC (1972) Thermodynamics of crystals. Wiley, New York

    Book  Google Scholar 

  41. Cranfill CW, More R (1978) IONEOS: a fast, analytic, ion equation-of-state routine. Los Alamos National Laboratory Tech. Rep. LA-7313-MS

    Google Scholar 

  42. Johnson JD (1991) A generic model for the ionic contribution to the equation of state. High Pressure Res 6:277

    Article  ADS  Google Scholar 

  43. Kerley GI (1980) Perturbation theory and the thermodynamic properties of fluids. II. The CRIS model. J Chem Phys 73:478

    Article  ADS  MathSciNet  Google Scholar 

  44. Chisolm E, Wallace DC (2004) Extending the CCW EOS II: extending the nuclear contribution to high temperatures. Los Alamos National Laboratory Tech. Rep. LA-UR-04-3948

    Google Scholar 

  45. Wallace DC (1997) Statistical mechanics of monatomic liquids. Phys Rev E 56:4179

    Article  ADS  Google Scholar 

  46. Burnett SC, Sheppard DG, Honnell KG, Sjostrom T (2018) Sesame-style decomposition of KS-DFT molecular dynamics for direct interrogation of nuclear models. In: AIP conference proceedings

    Google Scholar 

  47. Crockett SD (2004) Analysis of Sesame 3720: a new aluminum equation of state. Los Alamos National Laboratory Tech. Rep. LA-UR-04-6442

    Google Scholar 

  48. Sjostrom T, Crockett S, Rudin S (2016) Multiphase aluminum equations of state via density functional theory. Phys Rev B 94:144101

    Article  ADS  Google Scholar 

  49. Cox GA, Christie MA (2015) Fitting of a multiphase equation of state with swarm intelligence. J Phys Condens Matter 27:405201

    Article  Google Scholar 

  50. Chisolm E, Greeff C, George D (2005) Constructing explicit multiphase equations of state with OpenSesame. Los Alamos National Laboratory Tech. Rep. LA-UR-05-9413

    Google Scholar 

  51. Mulford R, Swift DC (2009) Polystyrene foam product EOS as a function of porosity and fill gas. Los Alamos National Laboratory Tech. Rep. LA-UR-09-05358

    Google Scholar 

  52. Abdallah J (1984) User’s manual for Grizzly. Los Alamos National Laboratory Tech. Rep. LA-10244-M

    Google Scholar 

  53. Magyar RJ, Root S, Mattsson TR (2014) Equations of state for mixtures: results from density-functional (DFT) simulations compared to high accuracy validation experiments on Z. J Phys Conf Ser 500:162004

    Article  Google Scholar 

  54. Bradley PA, Loomis EN, Merritt EC, Guzik JA, Denne PH, Clark TT (2018) Experimental validation of thermodynamic mixture rules at extreme pressures and densities. Phys Plasmas 25:012710

    Article  ADS  Google Scholar 

  55. Duval GE, Taylor SM (1971) Shock parameters in a two component mixture. J Compos Mater 5:130

    Article  Google Scholar 

  56. Nayak B, Menon SVG (2017) Generalized enthalpy based equation of state for multi-component mixtures. AIP Adv 7:045113

    Article  ADS  Google Scholar 

  57. Fredenburg DA (2010) Shock compaction and impact response of thermite powder mixtures. Thesis, Georgia Institute of Technology

    Google Scholar 

  58. Petel OE, Jett/’e FX (2010) Comparison of methods for calculating the shock Hugoniot of mixtures. Shock Waves 20:73

    Article  ADS  Google Scholar 

  59. Fredenburg DA, Koller DD, Coe JD, Kiyanda CB (2014) The influence of morphology on the low- and high-strain-rate compaction response of CeO2 powders. J Appl Phys 115:123511

    Article  ADS  Google Scholar 

  60. Chisolm E (2014) A multiphase equation of state for cerium (IV) oxide. J Phys Conf Ser 500:032004

    Article  Google Scholar 

  61. Sjostrom T, Crockett S (2015) Orbital-free extension to Kohn-Sham density functional theory equation of state calculations: application to silicon dioxide. Phys Rev B 92:115104

    Article  ADS  Google Scholar 

  62. Sjostrom T, Crockett S (2017) A liquid regime equation of state for silicon dioxide. AIP Conf Proc 1793:050010

    Article  Google Scholar 

  63. Millot M, Dubrovinskaia N, Cernok A, Blaha S, Dubrovinsky L, Braun DG, Celliers PM, Collins GW, Eggert JH, Jeanloz R (2015) Shock compression of stishovite and melting of silica at planetary interior conditions. Science 23:418

    Article  ADS  Google Scholar 

  64. Hicks DG, Boehly TR, Eggert JH, Miller JE, Celliers PM, Collins GW (2006) Dissociation of liquid silica at high pressures and temperatures. Phys Rev Lett 97:025502

    Article  ADS  Google Scholar 

  65. Hu SX, Collins LA, Goncharov VN, Kress JD, McCrory RL, Skupsky S (2015) First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions. Phys Rev E 92:043104

    Article  ADS  Google Scholar 

  66. Falk K, Fryer CL, Gamboa EJ, Greeff CW, Johns HM, Schmidt DW, Smid M, Benage JF, Montgomery DS (2017) X-ray Thomson scattering measurement of temperature in warm dense carbon. Plasma Phys Control Fusion 59:014050

    Article  ADS  Google Scholar 

  67. Marsh SP (1980) LASL shock Hugoniot data. University of California Press, Berkely

    Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges informative and fruitful collaborations with Scott Crockett, Carl Greeff, Eric Chisolm, and Anthony Fredenburg. The author also thanks Tracy J. Vogler for reading of the manuscript and discussion. This work was performed under the auspices of the United States Department of Energy under contract DE-AC52-06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Travis Sjostrom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sjostrom, T. (2019). Equation of State Modeling for Porous Materials. In: Vogler, T., Fredenburg, D. (eds) Shock Phenomena in Granular and Porous Materials. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-030-23002-9_1

Download citation

Publish with us

Policies and ethics