Skip to main content

Degree Spectra for Transcendence in Fields

  • Conference paper
  • First Online:
Computing with Foresight and Industry (CiE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11558))

Included in the following conference series:

Abstract

We show that for both the unary relation of transcendence and the finitary relation of algebraic independence on a field, the degree spectra of these relations may consist of any single computably enumerable Turing degree, or of those c.e. degrees above an arbitrary fixed \(\varDelta ^0_2\) degree. In other cases, these spectra may be characterized by the ability to enumerate an arbitrary \(\varSigma ^0_2\) set. This is the first proof that a computable field can fail to have a computable copy with a computable transcendence basis.

The research of the first author is supported by RSF Grant no. 18-11-00028; he is also funded by the Russian Ministry of Education and Science (project 1.451.2016/1.4) as a federal professor in mathematics. The second author was partially supported by Grant # 581896 from the Simons Foundation, and the second and third authors were both supported by grants from the City University of New York PSC-CUNY Research Award Program. The authors wish to acknowledge useful conversations with Dr. Kenneth Kramer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Downey, R.G., Lempp, S., Wu, G.: On the complexity of the successivity relation in computable linear orderings. J. Math. Log. 10(01n02), 83–99 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Downey, R.G., Moses, M.F.: Recursive linear orders with incomplete successivities. Trans. Am. Math. Soc. 326(2), 653–668 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ershov, Yu.L.: Theorie der Numerierungen. Zeits. Math. Logik Grund. Math. 23, 289–371 (1977)

    Google Scholar 

  4. Frohlich, A., Shepherdson, J.C.: Effective procedures in field theory. Phil. Trans. R. Soc. Lond. Ser. A 248(950), 407–432 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  5. Frolov, A., Kalimullin, I., Miller, R.: Spectra of algebraic fields and subfields. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds.) CiE 2009. LNCS, vol. 5635, pp. 232–241. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03073-4_24

    Chapter  MATH  Google Scholar 

  6. Leopoldt, H.-W.: Über die Automorphismengrupper des Fermatkorpers. J. Number Theory 56(2), 256–282 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Metakides, G., Nerode, A.: Effective content of field theory. Ann. Math. Log. 17, 279–320 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Miller, R.: Computable fields and Galois theory. Not. Am. Math. Soc. 55(7), 798–807 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Miller, R.: An introduction to computable model theory on groups and fields. Groups Complex. Cryptol. 3(1), 25–46 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Miller, R., Poonen, B., Schoutens, H., Shlapentokh, A.: A computable functor from graphs to fields. J. Symbol. Log. 83(1), 326–348 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Miller, R., Schoutens, H.: Computably categorical fields via Fermat’s Last Theorem. Computability 2, 51–65 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rabin, M.: Computable algebra, general theory, and theory of computable fields. Trans. Am. Math. Soc. 95, 341–360 (1960)

    MathSciNet  MATH  Google Scholar 

  13. Sacks, G.E.: Recursive enumerability and the jump operator. Trans. Am. Math. Soc. 108, 223–239 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  14. Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, New York (1987)

    Book  MATH  Google Scholar 

  15. Tzermias, P.: The group of automorphisms of the Fermat curve. J. Number Theory 53(1), 173–178 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. van der Waerden, B.L.: Algebra, volume I. Springer, New York (1970 hardcover, 2003 softcover). Trans. Blum, F., Schulenberger, J.R.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kalimullin, I., Miller, R., Schoutens, H. (2019). Degree Spectra for Transcendence in Fields. In: Manea, F., Martin, B., Paulusma, D., Primiero, G. (eds) Computing with Foresight and Industry. CiE 2019. Lecture Notes in Computer Science(), vol 11558. Springer, Cham. https://doi.org/10.1007/978-3-030-22996-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22996-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22995-5

  • Online ISBN: 978-3-030-22996-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics