Skip to main content

An algorithmic approach to characterizations of admissibles

  • Conference paper
  • First Online:
Book cover Computing with Foresight and Industry (CiE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11558))

Included in the following conference series:

  • 386 Accesses

Abstract

Sacks proved that every admissible countable ordinal is the first admissible ordinal relatively to a real. We give an algorithmic proof of this result for constructibly countable admissibles. Our study is completed by an algorithmic approach to a generalization of Sacks’ theorem due to Jensen, that finds a real relatively to which a countable sequence of admissibles, having a compatible structure, constitutes the sequence of the first admissibles. Our approach deeply involves infinite time Turing machines. We also present different considerations on the constructible ranks of the reals involved in coding ordinals.

The research for this paper has been done thanks to the support of the Agence nationale de la recherche through the RaCAF ANR-15-CE40-0016-01 grant.

The authors would like to thank the anonymous referees for their constructive comments which helped a lot to improve the manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Let \(\beta > \alpha \) be countable ordinals such that there is an elementary embedding \(j : L_\beta \rightarrow L_{\omega _2}\) with critical point. For every , \(L_{\omega _2} \models \)\(\text {No new reals appear between ranks }\omega _1\) and \(\omega _1+\gamma \).” No new reals thus appear between (j) and , by elementarity and absoluteness. Cf. [31, 2, 3, 28].

  2. 2.

    \(E_\alpha \) is an arithmetical copy of \(L_\alpha \) if there is one-one function f from \(L_\alpha \) to \(\omega \) (and onto the field of \(E_\alpha \)) such that \(\forall x, y \in L_\alpha \), \( x\in y \iff \langle f(x), f(y) \rangle \in E_\alpha \).

  3. 3.

    There exists \(\alpha \) such that \(L_\alpha \prec L_{\omega _1}\), \(\alpha \) is thus not definable in \(L_{\omega _1}\). There is a countable \(\upsilon > \alpha \) such that \(L_\upsilon \prec L_{\omega _1}\), and \(\alpha \) is already not definable in \(L_\upsilon \).

  4. 4.

    \(\upsilon _0\) is clearly \(\leqslant \) the least such \(\eta \), \(\eta _0\), since whenever one has \(L_\alpha \prec L_\beta \), \(\alpha \) is not definable in \(L_\beta \). Now, suppose that \(\upsilon _0 < \eta _0\), in other words, for all \(\delta < \upsilon _0\), \(L_\delta \not \prec L_{\upsilon _0}\). Now, by Löwenheim-Skolem there is a countable elementary submodel of \(L_{\upsilon _0}\). Take the \(\subseteq \)-least such model M. By the Condensation Lemma, there is an \(\alpha <\upsilon _0\) and an isomorphism j such that the Mostowski collapse of M is isomorphic to \(L_\alpha \) via j. j cannot be trivial as this would mean that \(L_\alpha \prec L_\delta \), although \(\delta < \upsilon _0\) and \(\upsilon _0\) is the least such ordinal. We can thus consider \(\kappa \), the critical point\(^{1}\) of j. Since \(L_\alpha \cong M \prec L_{\upsilon _0}\), \(L_\kappa \prec L_{j(\kappa )}\). But then \(\kappa \) cannot be definable in \(L_{j(\kappa )}\), and thus \(\upsilon _0 \leqslant j(\kappa )\). But \(j(\kappa )<\upsilon _0\), contradiction.

  5. 5.

    Consider \(\kappa = \aleph _\alpha \). \(\kappa \) is definable as the greatest cardinal in \(L_{\kappa ^+}\). (Here \(\kappa ^+\) denotes the least ordinal of cardinality greater than \(\kappa \).) And thus \(\alpha \) is also definable in \(L_{\kappa ^+}\). Löwenheim-Skolem’s theorem, in conjunction with Mostowski’s lemma and the Condensation Lemma, provides the countable \(\beta \) such that \(\alpha \) is definable in \(L_\beta \).

  6. 6.

    Cf. https://mathoverflow.net/questions/259100/memorable-ordinals.

  7. 7.

    Any countable \(\tau \) such that \(L_\tau \prec L_{\omega _1}\) is such an upper bound: if \(\alpha \) is definable at \(\beta \), take \(\delta \) above \(\tau \) and \(\beta \) such that \(L_\delta \prec L_{\omega _1}\). We then have \(L_\tau \prec L_\delta \prec L_{\omega _1}\). \(\alpha \) is thus definable at \(\delta \), since \(\delta \) is above \(\beta \), and also at \(\tau \). \(\tau \) is therefore above \(\alpha \) and any other definable ordinal. In fact, the least non-memorable ordinal \(\tau _0\) is the least ordinal \(\tau \) with uncountably many elementary extensions \(L_\tau \prec L_\gamma \). (Cf. footnote 6).

  8. 8.

    We use Barwise’s convention for admissibles: \(\tau _0=\omega \), \(\tau _1=\omega _1^{{\mathrm{CK}}}\), ..., \(\tau _\alpha \) is the \(\alpha \)-th admissible. Note that there exist admissibles \(\alpha \) such that \(\alpha =\tau _\alpha \). Such is the case for \(\lambda _\infty \), but it is not the first one.

  9. 9.

    The infinite join, \(\bigoplus _i r_i\), of the \(r_i\)’s is defined as \(\left\{ \langle i,j\rangle : j \in r_i \right\} \).

  10. 10.

    An ordinal \(\alpha \) is admissible relative to a set of ordinals A if \(\langle L_\alpha \left[ A\right] ; A \cap \alpha \rangle \) is an admissible structure.

  11. 11.

    Recall that \(Y \leqslant _h X\) if Y is hyperarithmetic in X, that is if Y is ITTM-computable in some bounded recursive ordinal length of time (\(<\omega _1^{{\mathrm{CK}},X}\)).

  12. 12.

    This hypothesis carries the ideas of progressivity of the sequence and indiscernibility by first order properties: in the list of admissibles \(\langle \tau _\beta : \beta < \lambda _\infty \rangle \), the sequence of indices that correspond to the considered sequence does not contain too much information in itself.

References

  1. Barwise, J.: Admissible Sets and Structures: An Approach to Definability Theory, Perspectives in Mathematical Logic, vol. 7. Springer, Heidelberg (1975)

    Google Scholar 

  2. Boolos, G.S.: The hierarchy of constructible sets of integers. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Mass. (1966)

    Google Scholar 

  3. Boolos, G.S., Putnam, H.: Degrees of unsolvability of constructible sets of integers. J. Symb. Log. 33, 497–513 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boyd, R., Hensel, G., Putnam, H.: A recursion-theoretic characterization of the ramified analytical hierarchy. Trans. Am. Math. Soc. 141, 37–62 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carl, M.: Ordinal Computability. De Gruyter Series in Logic and Its Applications, vol. 9. De Gruyter, July 2019

    Google Scholar 

  6. Carl, M., Durand, B., Lafitte, G., Ouazzani, S.: Admissibles in gaps. In: Kari et al. [24], pp. 175–186

    Google Scholar 

  7. Chong, C.T.: A recursion-theoretic characterization of constructible reals. Bull. Lond. Math. Soc. 9, 241–244 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chong, C.T., Yu, L.: Recursion theory. De Gruyter Series in Logic and Its Applications, vol. 8. De Gruyter (2015)

    Google Scholar 

  9. David, R.: A functorial \(\varPi ^1_2\) singleton. Adv. Math. 74, 258–268 (1989)

    Article  MathSciNet  Google Scholar 

  10. Devlin, K.: Constructibility. Springer, Heidelberg (1984)

    Book  MATH  Google Scholar 

  11. Durand, B., Lafitte, G.: A constructive Swiss knife for infinite time Turing machines (2016)

    Google Scholar 

  12. Friedman, H.: Minimality in the \({\varDelta }^1_2\)-degrees. Fundamenta Mathematicae 81(3), 183–192 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  13. Friedman, H., Jensen, R.: Note on admissible ordinals. In: Barwise, J. (ed.) The Syntax and Semantics of Infinitary Languages. LNM, vol. 72, pp. 77–79. Springer, Heidelberg (1968). https://doi.org/10.1007/BFb0079683

    Chapter  Google Scholar 

  14. Friedman, S.D.: An introduction to the admissibility spectrum. In: Marcus, R.B., Dorn, G.J., Weingartner, P. (eds.) Logic, Methodology and Philosophy of Science VII, Proceedings of the Seventh International Congress of Logic, Methodology and Philosophy of Science (Salzburg, 1983). Studies in Logic and the Foundations of Mathematics, vol. 114, pp. 129–139. North-Holland (1986)

    Google Scholar 

  15. Friedman, S.D.: Strong coding. Ann. Pure Appl. Log. 35, 1–98 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grilliot, T.: Omitting types: applications to recursion theory. J. Symb. Log. 37, 81–89 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hamkins, J.D., Lewis, A.: Infinite time Turing machines. J. Symb. Log. 65(2), 567–604 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hodes, H.T.: Jumping through the transfinite: the master code hierarchy of Turing degrees. J. Symb. Log. 45(2), 204–220 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hodes, H.T.: Upper bounds on locally countable admissible initial segments of a Turing degree hierarchy. J. Symb. Log. 46, 753–760 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hodes, H.T.: Jumping through the transfinite. Ph.D. thesis, Harvard University (1977)

    Google Scholar 

  21. Jech, T.: Set Theory: The Third Millennium Edition, Revised and Expanded. SMM. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44761-X

    Book  Google Scholar 

  22. Jensen, R.B.: The fine structure of the constructible hierarchy. Ann. Math. Log. 4, 229–308 (1972). Erratum, ibid. 4, 443 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jensen, R.B.: Admissible sets, December 2010. https://www.mathematik.hu-berlin.de/~raesch/org/jensen.html. Handwritten notes (1969)

  24. Kari, J., Manea, F., Petre, I. (eds.): CiE 2017. LNCS, vol. 10307. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58741-7

    Book  MATH  Google Scholar 

  25. Koepke, P.: Turing computations on ordinals. Bull. Symb. Log. 11, 377–397 (2005)

    Article  MATH  Google Scholar 

  26. Koepke, P., Seyfferth, B.: Ordinal machines and admissible recursion theory. Ann. Pure Appl. Log. 160, 310–318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Le Scornet, P.: Les machines de Turing en temps transfini. Rapport de stage, Ecole Normale Supérieure de Rennes, June 2017

    Google Scholar 

  28. Leeds, S., Putnam, H.: An intrinsic characterization of the hierarchy of constructible sets of integers. In: Gandy, R.O., Yates, C.M.E. (eds.) Logic Colloquium ’69 (Proceedings of the Summer School and Colloquium in Mathematical Logic, Manchester, August 1969), pp. 311–350. North-Holland (1971)

    Google Scholar 

  29. Lukas, J.D., Putnam, H.: Systems of notations and the ramified analytical hierarchy. J. Symb. Log. 39, 243–253 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  30. Marek, W., Srebrny, M.: Gaps in the constructible universe. Ann. Math. Log. 6, 359–394 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  31. Putnam, H.: A note on constructible sets of integers. Notre Dame J. Formal Log. 4(4), 270–273 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sacks, G.E.: Forcing with perfect closed sets. In: Proceedings of the Symposia Pure Math, vol. XIII, pp. 331–355. American Mathematical Society (1971)

    Google Scholar 

  33. Sacks, G.E.: Countable admissible ordinals and hyperdegrees. Adv. Math. 19, 213–262 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  34. Seyfferth, B.: Three models of ordinal computability. Ph.D. thesis, Rheinischen Friedrich-Wilhelms-Universitat Bonn (2012)

    Google Scholar 

  35. Simpson, S.G., Weitkamp, G.: High and low Kleene degrees of coanalytic sets. J. Symb. Log. 48(2), 356–368 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  36. Welch, P.D.: Eventually infinite time Turing degrees: infinite time decidable reals. J. Symb. Log. 65(3), 1193–1203 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Welch, P.D.: Characteristics of discrete transfinite time Turing machine models: halting times, stabilization times, and normal form theorems. Theoret. Comput. Sci. 410, 426–442 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bruno Durand or Grégory Lafitte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Durand, B., Lafitte, G. (2019). An algorithmic approach to characterizations of admissibles. In: Manea, F., Martin, B., Paulusma, D., Primiero, G. (eds) Computing with Foresight and Industry. CiE 2019. Lecture Notes in Computer Science(), vol 11558. Springer, Cham. https://doi.org/10.1007/978-3-030-22996-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22996-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22995-5

  • Online ISBN: 978-3-030-22996-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics