Skip to main content

Complexity of Maximum Fixed Point Problem in Boolean Networks

  • Conference paper
  • First Online:
Computing with Foresight and Industry (CiE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11558))

Included in the following conference series:

Abstract

A Boolean network (BN) with n components is a discrete dynamical system described by the successive iterations of a function \(f:\{{ \texttt {0}},{ \texttt {1}}\}^n \rightarrow \{{ \texttt {0}},{ \texttt {1}}\}^n\). This model finds applications in biology, where fixed points play a central role. For example in genetic regulation they correspond to cell phenotypes. In this context, experiments reveal the existence of positive or negative influences among components: component i has a positive (resp. negative) influence on component j, meaning that j tends to mimic (resp. negate) i. The digraph of influences is called signed interaction digraph (SID), and one SID may correspond to multiple BNs. The present work opens a new perspective on the well-established study of fixed points in BNs. Biologists discover the SID of a BN they do not know, and may ask: given that SID, can it correspond to a BN having at least k fixed points? Depending on the input, this problem is in \( \textsf {P}\) or complete for \(\textsf {NP}\), \(\textsf {NP}^\textsf {\#P}\) or \(\textsf {NEXPTIME}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The Online Encyclopedia of Integer Sequences, founded in 1964 by N. J. A. Sloane. Sequence A006126. https://oeis.org/A006126

  2. Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small number of gene expression patterns under the boolean network model. In: Biocomputing’99, pp. 17–28. World Scientific (1999)

    Google Scholar 

  3. Albert, R.: Boolean modeling of genetic regulatory networks. In: Ben-Naim, E., Frauenfelder, H., Toroczkai, Z. (eds.) Complex Networks. LNP, vol. 650, pp. 459–481. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-44485-5_21

    Chapter  MATH  Google Scholar 

  4. Aracena, J.: Maximum number of fixed points in regulatory Boolean networks. Bull. Math. Biol. 70(5), 1398–1409 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aracena, J., Demongeot, J., Goles, E.: Fixed points and maximal independent sets in and-or networks. Discrete Appl. Math. 138(3), 277–288 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aracena, J., Richard, A., Salinas, L.: Maximum number of fixed points in AND-OR-NOT networks. J. Comput. Syst. Sci. 80(7), 1175–1190 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aracena, J., Richard, A., Salinas, L.: Number of fixed points and disjoint cycles in monotone Boolean networks. SIAM J. Discrete Math. 31(3), 1702–1725 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boros, E., Ibaraki, T., Makino, K.: Error-free and best-fit extensions of partially defined Boolean functions. Inf. Comput. 140(2), 254–283 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Crama, Y., Hammer, P.L.: Boolean Functions: Theory, Algorithms, and Applications. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  10. Feder, T.: A new fixed point approach for stable networks and stable marriages. J. Comput. Syst. Sci. 45(2), 233–284 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gadouleau, M., Richard, A., Riis, S.: Fixed points of Boolean networks, guessing graphs, and coding theory. SIAM J. Discrete Math. 29(4), 2312–2335 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gadouleau, M., Riis, S.: Graph-theoretical constructions for graph entropy and network coding based communications. IEEE Trans. Inf. Theory 57(10), 6703–6717 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goles, E., Salinas, L.: Sequential operator for filtering cycles in Boolean networks. Adv. Appl. Math. 45(3), 346–358 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kauffman, S.A.: Metabolic stability and epigenesis in randomly connected nets. J. Theor. Biol. 22, 437–467 (1969)

    Article  Google Scholar 

  15. Kauffman, S.A.: Origins of Order Self-Organization and Selection in Evolution. Oxford University Press, Oxford (1993)

    Google Scholar 

  16. Kaufman, M., Soulé, C., Thomas, R.: A new necessary condition on interaction graphs for multistationarity. J. Theoret. Biol. 248(4), 675–685 (2007)

    Article  MathSciNet  Google Scholar 

  17. Kosub, S.: Dichotomy results for fixed-point existence problems for Boolean dynamical systems. Math. Comput. Sci. 1(3), 487–505 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Le Novère, N.: Quantitative and logic modelling of molecular and gene networks. Nat. Rev. Genet. 16, 146–158 (2015)

    Article  Google Scholar 

  19. Littman, M.L., Goldsmith, J., Mundhenk, M.: The computational complexity of probabilistic planning. J. Artif. Intell. Res. 9, 1–36 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. McCuaig, W.: Pólya’s permanent problem. Electron. J. Comb. 11(1), 79 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Montalva, M., Aracena, J., Gajardo, A.: On the complexity of feedback set problems in signed digraphs. Electron. Not. Discrete Math. 30, 249–254 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

    Google Scholar 

  23. Paulevé, L., Richard, A.: Topological fixed points in Boolean networks. Comptes Rendus de l’Académie des Sci.-Ser. I-Math. 348(15–16), 825–828 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Remy, E., Ruet, P., Thieffry, D.: Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework. Adv. Appl. Math. 41(3), 335–350 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Richard, A.: Positive and negative cycles in Boolean networks. J. Theor. Biol. 463, 67–76 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Robert, F.: Discrete Iterations: A Metric Study. Springer Series in Computational Mathematics, vol. 6, p. 198. Springer, Heidelberg (1986). https://doi.org/10.1007/978-3-642-61607-5

    Book  Google Scholar 

  27. Robertson, N., Seymour, P., Thomas, R.: Permanents, pfaffian orientations, and even directed circuits. Ann. Math. 150(3), 929–975 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Soulé, C.: Mathematical approaches to differentiation and gene regulation. C.R. Paris Biol. 329, 13–20 (2006)

    Article  Google Scholar 

  29. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  30. Thomas, R.: Boolean formalization of genetic control circuits. J. Theor. Biol. 42(3), 563–585 (1973). https://doi.org/10.1016/0022-5193(73)90247-6

    Article  Google Scholar 

  31. Thomas, R., d’Ari, R.: Biological Feedback. CRC Press, Boca Raton (1990)

    MATH  Google Scholar 

  32. Thomas, R., Kaufman, M.: Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits. Chaos Interdisc. J. Nonlinear Sci. 11(1), 180–195 (2001)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank for their support the Young Researcher project ANR-18-CE40-0002-01 “FANs”, project ECOS-CONICYT C16E01, and project STIC AmSud CoDANet 19-STIC-03 (Campus France 43478PD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Bridoux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bridoux, F., Durbec, N., Perrot, K., Richard, A. (2019). Complexity of Maximum Fixed Point Problem in Boolean Networks. In: Manea, F., Martin, B., Paulusma, D., Primiero, G. (eds) Computing with Foresight and Industry. CiE 2019. Lecture Notes in Computer Science(), vol 11558. Springer, Cham. https://doi.org/10.1007/978-3-030-22996-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22996-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22995-5

  • Online ISBN: 978-3-030-22996-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics