Skip to main content

Complexity of Conjunctive Regular Path Query Homomorphisms

  • Conference paper
  • First Online:
Computing with Foresight and Industry (CiE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11558))

Included in the following conference series:

Abstract

A graph database is a digraph whose arcs are labelled with symbols from a fixed alphabet. A regular graph pattern (RGP) is a digraph whose edges are labelled with regular expressions over the alphabet. RGPs model navigational queries for graph databases, more precisely, conjunctive regular path queries. A match of a navigational RGP query in the database is witnessed by a special navigational homomorphism of the RGP to the database. We study the complexity of deciding the existence of a homomorphism between two RGPs. Such homomorphisms model a strong type of containment between two navigational RGP queries. We show that this problem can be solved by an EXPTIME algorithm (while general query containment in this context is EXPSPACE-complete). We also study the problem for restricted RGPs over a unary alphabet, that arise from some applications like XPath, and prove that certain interesting cases are polynomial-time solvable.

The authors acknowledge the support received from the Agence Nationale de la Recherche of the French government throught the program “Investissements d’Avenir” (16-IDEX-0001 CAP 20-25), the IFCAM project “Applications of graph homomorphisms” (MA/IFCAM/18/39), and by the ANR project HOSIGRA (ANR-17-CE40-0022).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There exist more complicated examples where, furthermore, the two non-isomorphic n-cores have the same size.

  2. 2.

    This is not true for all acyclic RGPs: there are trees T such that Hom(T) is NP-hard [6]. Thus, for the corresponding \(\{a\}\)-RGP Q(T), RGPHom(Q(T)) is NP-hard.

References

  1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)

    MATH  Google Scholar 

  2. Angles, R., et al.: G-CORE: a core for future graph query languages. In: SIGMOD Conference 2018. ACM (2018). https://doi.org/10.1145/3183713.3190654

  3. Baeza, P.B.: Querying graph databases. In: PODS 2013 (2013). https://doi.org/10.1145/2463664.2465216

  4. Barceló, P., Romero, M., Vardi, M.Y.: Semantic acyclicity on graph databases. SIAM J. Comput. 45(4), 1339–1376 (2016). https://doi.org/10.1137/15M1034714

    Article  MathSciNet  MATH  Google Scholar 

  5. Bulatov, A.A.: A dichotomy theorem for nonuniform CSPs. In: FOCS 2017 (2017). https://doi.org/10.1109/FOCS.2017.37

  6. Bulin, J.: On the complexity of \(H\)-coloring for special oriented trees. Eur. J. Comb. 69, 54–75 (2018). https://doi.org/10.1016/j.ejc.2017.10.001

    Article  MathSciNet  MATH  Google Scholar 

  7. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Containment of conjunctive regular path queries with inverse. In: KR 2000 (2000)

    Google Scholar 

  8. Czerwinski, W., Martens, W., Niewerth, M., Parys, P.: Optimizing tree patterns for querying graph- and tree-structured data. SIGMOD Rec. 46(1), 15–22 (2017). https://doi.org/10.1145/3093754.3093759

    Article  Google Scholar 

  9. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint satisfaction: a study through datalog and group theory. SIAM J. Comput. 28(1), 57–104 (1998). https://doi.org/10.1137/S0097539794266766

    Article  MathSciNet  MATH  Google Scholar 

  10. Florescu, D., Levy, A.Y., Suciu, D.: Query containment for conjunctive queries with regular expressions. In: PODS 1998 (1998). https://doi.org/10.1145/275487.275503

  11. Hell, P., Nesetril, J.: On the complexity of H-coloring. J. Comb. Theory Ser. B 48(1), 92–110 (1990). https://doi.org/10.1016/0095-8956(90)90132-J

    Article  MathSciNet  MATH  Google Scholar 

  12. Hell, P., Nesetril, J.: The core of a graph. Discrete Math. 109(1–3), 117–126 (1992). https://doi.org/10.1016/0012-365X(92)90282-K

    Article  MathSciNet  MATH  Google Scholar 

  13. Hunt, H.B., Rosenkrantz, D.J., Szymanski, T.G.: On the equivalence, containment, and covering problems for the regular and context-free languages. J. Comput. Syst. Sci. 12, 222–268 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jeavons, P., Cohen, D.A., Cooper, M.C.: Constraints, consistency and closure. Artif. Intell. 101(1–2), 251–265 (1998). https://doi.org/10.1016/S0004-3702(98)00022-8

    Article  MathSciNet  MATH  Google Scholar 

  15. Kimelfeld, B., Sagiv, Y.: Revisiting redundancy and minimization in an XPath fragment. In: EDBT 2008 (2008). https://doi.org/10.1145/1353343.1353355

  16. Kolaitis, P.G., Vardi, M.Y.: Conjunctive-query containment and constraint satisfaction. J. Comput. Syst. Sci. 61(2), 302–332 (2000). https://doi.org/10.1006/jcss.2000.1713

    Article  MathSciNet  MATH  Google Scholar 

  17. Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases. SIAM J. Comput. 24(6), 1235–1258 (1995). https://doi.org/10.1137/S009753979122370X

    Article  MathSciNet  MATH  Google Scholar 

  18. Miklau, G., Suciu, D.: Containment and equivalence for a fragment of XPath. J. ACM 51(1), 2–45 (2004). https://doi.org/10.1145/962446.962448

    Article  MathSciNet  MATH  Google Scholar 

  19. Romero, M., Barceló, P., Vardi, M.Y.: The homomorphism problem for regular graph patterns. In: LICS 2017 (2017). https://doi.org/10.1109/LICS.2017.8005106

  20. Sedgewick, R., Wayne, K.: Algorithms, 4th edn. Addison-Wesley, Reading (2011)

    Google Scholar 

  21. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: preliminary report. In: STOC 1973 (1973). https://doi.org/10.1145/800125.804029

  22. Zhuk, D.: A proof of CSP dichotomy conjecture. In: FOCS 2017 (2017). https://doi.org/10.1109/FOCS.2017.38

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent Madelaine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beaudou, L., Foucaud, F., Madelaine, F., Nourine, L., Richard, G. (2019). Complexity of Conjunctive Regular Path Query Homomorphisms. In: Manea, F., Martin, B., Paulusma, D., Primiero, G. (eds) Computing with Foresight and Industry. CiE 2019. Lecture Notes in Computer Science(), vol 11558. Springer, Cham. https://doi.org/10.1007/978-3-030-22996-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22996-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22995-5

  • Online ISBN: 978-3-030-22996-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics