Skip to main content

How Do Bacterial Neurotoxins Affect Neurosecretion?

  • Chapter
  • First Online:
Neurosecretion: Secretory Mechanisms

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 8))

Abstract

The mechanism by which bacterial toxins alter or interfere with secretion mechanisms are addressed in this chapter. After a brief description of the general mechanism of bacterial exotoxins, examples of key toxins affecting neurosecretion are commented upon. These comprise the botulinum and tetanus neurotoxins (BoNT and TeNT), which are toxins that divert synaptic vesicle (SV) recycling to enter nerve endings, and impair exocytosis by cleaving the soluble N-ethyl-maleimide-sensitive-factor attachment receptors (SNAREs). Given the important role of Rho, Rac, CDC42 GTPase, and F-actin in the vesicle/granule intracellular traffic and secretion processes, we address several examples of key bacterial cytotoxins affecting their cellular functions. We also briefly comment on the action of a few bacterial toxins that potentiate release of neurotransmitters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aktories K, Schwan C, Papatheodorou P, Lang AE (2012) Bidirectional attack on the actin cytoskeleton. Bacterial protein toxins causing polymerization or depolymerization of actin. Toxicon 60:572–581

    Article  CAS  Google Scholar 

  • Aktories K (2011) Bacterial protein toxins that modify host regulatory GTPases. Nat Rev Microbiol 9:487–498

    Article  CAS  Google Scholar 

  • Bercsenyi K, Schmieg N, Bryson JB, Wallace M, Caccin P, Golding M, Zanotti G, Greensmith L, Nischt R, Schiavo G (2014) Tetanus toxin entry. Nidogens are therapeutic targets for the prevention of tetanus. Science 346:1118–1123

    Article  CAS  Google Scholar 

  • Burleigh DE, Banks MR (2007) Stimulation of intestinal secretion by vasoactive intestinal peptide and cholera toxin. Auton Neurosci 133:64–75

    Article  CAS  Google Scholar 

  • Croisé P, Estay-Ahumada C, Gasman S, Ory S (2014) Rho GTPases, phosphoinositides, and actin: a tripartite framework for efficient vesicular trafficking. Small GTPases 5:e29469. https://doi.org/10.4161/sgtp.29469

    Article  PubMed  PubMed Central  Google Scholar 

  • Doussau F, Gasman S, Humeau Y, Vitiello F, Popoff M, Boquet P, Bader MF, Poulain B (2000) A rho-related GTPase is involved in Ca(2+)-dependent neurotransmitter exocytosis. J Biol Chem 275:7764–7770

    Article  CAS  Google Scholar 

  • Doussau F, Schmidt H, Dorgans K, Valera AM, Poulain B, Isope P (2017) Frequency-dependent mobilization of heterogeneous pools of synaptic vesicles shapes presynaptic plasticity. elife 6:e28935. https://doi.org/10.7554/eLife.28935

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerhard R (2017) Receptors and binding structures for Clostridium difficile toxins A and B. Curr Top Microbiol Immunol 406:79–96

    PubMed  Google Scholar 

  • Gutierrez LM, Villanueva J (2018) The role of F-actin in the transport and secretion of chromaffin granules: an historic perspective. Pflügers Arch 470:181–186

    Article  CAS  Google Scholar 

  • Humeau Y, Doussau F, Grant NJ, Poulain B (2000) How botulinum and tetanus neurotoxins block neurotransmitter release. Biochimie 82:427–446

    Article  CAS  Google Scholar 

  • Humeau Y, Doussau F, Popoff MR, Benfenati F, Poulain B (2007) Fast changes in the functional status of release sites during short-term plasticity: involvement of a frequency-dependent bypass of Rac at Aplysia synapses. J Physiol 583:983–1004

    Article  CAS  Google Scholar 

  • Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490:201–207

    Article  CAS  Google Scholar 

  • Lee K, Gu S, Jin L, Le TT, Cheng LW, Strotmeier J, Kruel AM, Yao G, Perry K, Rummel A, Jin R (2013) Structure of a bimodular botulinum neurotoxin complex provides insights into its oral toxicity. PLoS Pathog 9:e1003690

    Article  Google Scholar 

  • Masuyer G, Chaddock JA, Foster KA, Acharya KR (2014) Engineered botulinum neurotoxins as new therapeutics. Annu Rev Pharmacol Toxicol 54:27–51

    Article  CAS  Google Scholar 

  • Meng J, Wang J, Lawrence G, Dolly JO (2007) Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J Cell Sci 120:2864–2874

    Article  CAS  Google Scholar 

  • Peck MW, Smith TJ, Anniballi F, Austin JW, Bano L, Bradshaw M, Cuervo P, Cheng LW, Derman Y, Dorner BG, Fisher A, Hill KK, Kalb SR, Korkeala H, Lindström M, Lista F, Lúquez C, Mazuet C, Pirazzini M, Popoff MR, Rossetto O, Rummel A, Sesardic D, Singh BR, Stringer SC (2017) Historical perspectives and guidelines for botulinum neurotoxin subtype nomenclature. Toxins (Basel) 9:E38. https://doi.org/10.3390/toxins9010038

    Article  CAS  Google Scholar 

  • Pirazzini M, Rossetto O, Eleopra R, Montecucco C (2017) Botulinum neurotoxins: biology, pharmacology, and toxicology. Pharmacol Rev 69:200–235

    Article  CAS  Google Scholar 

  • Popoff MR, Poulain B (2010) Bacterial toxins and the nervous system: neurotoxins and multipotential toxins interacting with neuronal cells. Toxins (Basel) 2:683–737

    Article  CAS  Google Scholar 

  • Popoff MR, Stiles B, Poulain B (2016) Clostridium perfringens epsilon toxin: structural and mechanistic insights. In: Gopalakrishnakone P, Stiles B, Alape-Girón A, Dubreuil J, Mandal M (eds) Microbial toxins: toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6725-6_9-1

    Chapter  Google Scholar 

  • Poulain B, Popoff MR, Molgó J (2008) How do the botulinum neurotoxins block neurotransmitter release: from botulism to the molecular mechanism of action. Botulinum J 1:14–87. https://doi.org/10.1504/TBJ.2008.018951

    Article  Google Scholar 

  • Poulain B, Molgó J, Popoff MR (2015) Clostridial neurotoxins: from the cellular and molecular mode of action to their therapeutic use. In: Alouf JE, Ladant D, Popoff MR (eds) The comprehensive sourcebook of bacterial protein toxins, 4th edn. Elsevier, Cambridge, MA, pp 287–336. ISBN: 978-0-12-800188-2

    Chapter  Google Scholar 

  • Rogasevskaia TP, Coorssen JR (2015) The role of phospholipase D in regulated exocytosis. J Biol Chem 290:28683–28696

    Article  CAS  Google Scholar 

  • Rohrbeck A, Just I (2017) Cell entry of C3 exoenzyme from clostridium botulinum. Curr Top Microbiol Immunol 406:97–118

    CAS  PubMed  Google Scholar 

  • Rummel A (2015) The long journey of botulinum neurotoxins into the synapse. Toxicon 107:9–24

    Article  CAS  Google Scholar 

  • Surana S, Tosolini AP, Meyer IFG, Fellows AD, Novoselov SS, Schiavo G (2018) The travel diaries of tetanus and botulinum neurotoxins. Toxicon 147:58–67

    Article  CAS  Google Scholar 

  • Shoemaker CB, Oyler GA (2013) Persistence of botulinum neurotoxin inactivation of nerve function. Curr Top Microbiol Immunol 364:179–196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tao L, Peng L, Berntsson RP, Liu SM, Park S, Yu F, Boone C, Palan S, Beard M, Chabrier PE, Stenmark P, Krupp J, Dong M (2017) Engineered botulinum neurotoxin B with improved efficacy for targeting human receptors. Nat Commun 8:53

    Article  Google Scholar 

  • Tsai YC, Kotiya A, Kiris E, Yang M, Bavari S, Tessarollo L, Oyler GA, Weissman AM (2017) Deubiquitinating enzyme VCIP135 dictates the duration of botulinum neurotoxin type A intoxication. Proc Natl Acad Sci U S A 114:E5158–E5166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valera AM, Doussau F, Poulain B, Barbour B, Isope P (2012) Adaptation of granule cell to Purkinje cell synapses to high-frequency transmission. J Neurosci 32:3267–3280

    Article  CAS  Google Scholar 

  • Wioland L, Dupont JL, Bossu JL, Popoff MR, Poulain B (2013) Attack of the nervous system by Clostridium perfringens Epsilon toxin: from disease to mode of action on neural cells. Toxicon 75:122–135

    Article  CAS  Google Scholar 

  • Wioland L, Dupont JL, Doussau F, Gaillard S, Heid F, Isope P, Pauillac S, Popoff MR, Bossu JL, Poulain B (2015) Epsilon toxin from Clostridium perfringens acts on oligodendrocytes without forming pores, and causes demyelination. Cell Microbiol 17:369–388

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Poulain .

Editor information

Editors and Affiliations

Key References: See Main List for Reference Details

Key References: See Main List for Reference Details

  • Aktories (2011) A comprehensive review for non-specialized biologist.

  • Lee et al. (2013) The 3D structure of a BoNT bound to nontoxic associated proteins.

  • Tsai et al. (2017) A key paper explaining how a bacterial toxin can escape for intracellular degradation.

  • Pirazzini et al. (2017) A comprehensive review on the mechanisms of Botulinum neurotoxins.

  • Poulain et al. (2008) A comprehensive review on botulinum toxins, making a link between the molecular aspects, synaptic manifestations and pathophysiology.

  • Wioland et al. (2015) First report of the de-myelinating action of a bacterial toxin.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Poulain, B., Doussau, F. (2020). How Do Bacterial Neurotoxins Affect Neurosecretion?. In: Lemos, J., Dayanithi, G. (eds) Neurosecretion: Secretory Mechanisms. Masterclass in Neuroendocrinology, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-22989-4_12

Download citation

Publish with us

Policies and ethics