Skip to main content

Deep Neural Networks for Indoor Localization Using WiFi Fingerprints

  • Conference paper
  • First Online:
Book cover Mobile, Secure, and Programmable Networking (MSPN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 11557))

Abstract

In this paper, we propose a novel Wi-Fi positioning method based on Deep Learning. More specifically, we investigate a Stacked AutoEncoder-based model for global location recognition from WiFi fingerprinting data. Stacked AutoEncoder works very well in learning useful high-level features for better representation of input raw data. For our proposed model, two trained unsupervised autoencoders were stacked, then the whole network was trained globally by adding a Softmax output layer for classification. The experimental results show that our Deep Learning based model performs better than SVM and KNN machine learning approaches in a large multi-floor building composed of 162 rooms. Our model achieves an accuracy of \(85.58\%\) and a test time that does not exceed 0.26 s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 37(6), 1067–1080 (2007)

    Article  Google Scholar 

  2. Rong, P., Sichitiu, M.L.: Angle of arrival localization for wireless sensor networks. In: IEEE Sensor and Ad Hoc Communications and Networks (2006)

    Google Scholar 

  3. Guvenc, I., Chong, C.C.: A survey on TOA based wireless localization and NLOS mitigation techniques. IEEE Commun. Surv. Tutor. 11(3), 107–124 (2009)

    Article  Google Scholar 

  4. Barsocchi, P., Chessa, S., Ferro, E., Furfari, F., Potorti, F.: Context driven enhancement of RSS-based localization systems. In: 2011 IEEE Symposium on Computers and Communications (ISCC), pp. 463–468, 28 June–1 July 2011 (2011)

    Google Scholar 

  5. Bahl, P., Padmanabhan, V.: RADAR: an in-building RF-based user location and tracking system. In: IEEE INFOCOM, vol. 2, pp. 775–784 (2000)

    Google Scholar 

  6. Laoudias, C., Kemppi, P., Panayiotou, C.: Localization using radial basis function networks and signal strength fingerprints in WLAN. In: IEEE GLOBECOM, pp. 1–6 (2009)

    Google Scholar 

  7. Nerguizian, C., Despins, C., Affes, S.: Geolocation in mines with an impulse response fingerprinting technique and neural networks. IEEE Trans. Wirel. Commun. 5(3), 603–611 (2006)

    Article  Google Scholar 

  8. Chriki, A., Touati, H., Snoussi, H.: SVM-based indoor localization in wireless sensor networks. In: IWCMC, pp. 1144–1149 (2017)

    Google Scholar 

  9. Deng, L.: Three classes of deep learning architectures and their applications: a tutorial survey. APSIPA Trans. Sig. Inf. Process. (2012). https://doi.org/10.1017/atsip.2013.9

    Article  Google Scholar 

  10. Zhang, W., Zhang, Y., Ma, L., Guan, J., Gong, S.: Multimodal learning for facial expression recognition. Pattern Recognit. 48(10), 3191–3202 (2015)

    Article  Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  12. Mohamed, A.-R., Dahl, G.E., Hinton, G.: Acoustic modeling using deep belief networks. IEEE Trans. Audio Speech Lang. Process. 20(1), 14–22 (2012)

    Article  Google Scholar 

  13. Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process. 20(1), 30–42 (2012)

    Article  Google Scholar 

  14. Sermanet, P., Hadsell, R., Scoffier, M., Muller, U., LeCun, Y.: Mapping and planning under uncertainty in mobile robots with long-range perception. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, Nice, France, pp. 2525–2530. IEEE (2008)

    Google Scholar 

  15. Hadsell, R., et al.: Learning long-range vision for autonomous off-road driving. J. Field Robot. 26(2), 120–144 (2009)

    Article  Google Scholar 

  16. Wang, X., Gao, L., Mao, S., Pandey, S.: DeepFi: deep learning for indoor fingerprinting using channel state information. In: 2015 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1666–1671. IEEE (2015)

    Google Scholar 

  17. Wang, X., Wang, X., Mao, S.: CiFi: deep convolutional neural networks for indoor localization with 5 GHz Wi-Fi. In: IEEE International Conference on Communications (ICC), May 2017

    Google Scholar 

  18. Zhang, W., Liu, K., Zhang, W., Zhang, Y., Gu, J.: Deep neural networks for wireless localization in indoor and outdoor environments. Neurocomputing 194, 279–287 (2016)

    Article  Google Scholar 

  19. Luo, J., Gao, H.: Deep belief networks for fingerprinting indoor localization using ultrawideband technology. Int. J. Distrib. Sensor Netw. 12(1), 5840916 (2016)

    Article  Google Scholar 

  20. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  21. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., Bengio, S.: Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Xu, J., et al.: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging 35(1), 119–130 (2015)

    Article  MathSciNet  Google Scholar 

  23. Camacho, F., Torres, R., Ramos-Pollán, R.: Feature learning using stacked autoencoders to predict the activity of antimicrobial peptides. In: Roux, O., Bourdon, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 121–132. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23401-4_11

    Chapter  Google Scholar 

  24. Maria, J., Amaro, J., Falcao, G., Alexandre, L.A.: Stacked autoencoders using low-power accelerated architectures for object recognition in autonomous systems. Neural Process. Lett. 43, 1–14 (2015)

    Google Scholar 

  25. Zhou, X., Guo, J., Wang, S.: Motion recognition by using a stacked autoencoder-based deep learning algorithm with smart phones. In: Xu, K., Zhu, H. (eds.) WASA 2015. LNCS, vol. 9204, pp. 778–787. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21837-3_76

    Chapter  Google Scholar 

  26. Sarroff, A.M., Casey, M.: Musical audio synthesis using autoencoding neural nets. In: Proceedings ICMCISMCI 2014, Athens, Greece, 14–20 September 2014 (2014)

    Google Scholar 

  27. Chao, L., Tao, J., Yang, M., Li, Y.: Improving generation performance of speech emotion recognition by denoising autoencoders. In: The 9th International Symposium on Chinese Spoken Language Processing (ISCSLP), pp. 341–344 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souad BelMannoubi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

BelMannoubi, S., Touati, H. (2019). Deep Neural Networks for Indoor Localization Using WiFi Fingerprints. In: Renault, É., Boumerdassi, S., Leghris, C., Bouzefrane, S. (eds) Mobile, Secure, and Programmable Networking. MSPN 2019. Lecture Notes in Computer Science(), vol 11557. Springer, Cham. https://doi.org/10.1007/978-3-030-22885-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22885-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22884-2

  • Online ISBN: 978-3-030-22885-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics