Skip to main content

ECG Beat Classification Based on Stationary Wavelet Transform

  • Conference paper
  • First Online:
Mobile, Secure, and Programmable Networking (MSPN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 11557))

Abstract

ECG processing is a non-invasive technique that is frequently used for diagnosis of various cardiac diseases. One of the crucial steps of an ECG diagnosis system is the heartbeat classification. In this work, we propose a new method for QRS complex classification based on Stationary Wavelet Transform (SWT), and two classifiers, which are Support Vector Machine (SVM) and K-Nearest Neighbors (KNN). In our scheme, SWT was used to extract the discriminatory features from the useful frequency sub-bands for each QRS complex class. The extracted features were used as inputs of SVM and KNN in order to classify five types of heartbeats, which are Normal (N), Premature Ventricular Contraction (PVC), Atrium Premature Contraction (APC), Left Bundle Branch Block (LBBB), and Right Bundle Branch Block (RBBB). The experimental results obtained on MIT-BIH Arrythmia database (MITDB), show that the proposed system yields acceptable performances with an overall classification accuracy of 98.56% and 98.74% for KNN and SVM classifiers respectively, using the 10-cross validation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since SWT requires that the signal length should be multiple of \(2^{Level}\), the QRS wave was zeros padded with 6 zeros samples (i.e. 256 samples).

  2. 2.

    In this work, we have used ‘db4’ wavelet due to its great similarity with the QRS complex.

References

  1. Afonso, V., Tompkins, W., Nquyen, T., Luo, S.: ECG beat detection using filter banks. IEEE Trans. Biomed. Eng. 46(2), 192–201 (1999)

    Article  Google Scholar 

  2. Benitez, S., Gaydecki, P., Zaidi, A., Fitzpatrick, A.: The use of the Hilbert transform in ECG signal analysis. Comput. Biol. Med. 31, 399–406 (2001)

    Article  Google Scholar 

  3. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT 1992, pp. 144–152. ACM, New York (1992). https://doi.org/10.1145/130385.130401

  4. Bouaziz, F., Boutana, D., Benidir, M.: Multiresolution wavelet-based QRS complex detection algorithm suited to several abnormal morphologies. IET. Signal Process. 8(7), 774–782 (2014). https://doi.org/10.1049/iet-spr.2013.0391

    Article  Google Scholar 

  5. Chen, S., Chen, H., Chan, H.: A real-time QRS method based on moving-averaging incorporating with wavelet denoising. Comput. Methods Prog. Biomed. 82(3), 187–195 (2006)

    Article  Google Scholar 

  6. Christianini, N., Taylor, J.S.: An Introduction to Support Vector Machines and Other Kernel based Learning Methods. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  7. Clifford, G.D., Azuaje, F., McSharry, P.E.: Advanced methods and tools for ECG data analysis. Engineering in Medicine and Biology Series, Artech House, Inc. (2006). ISBN 1580539661

    Google Scholar 

  8. Faust, O., Hagiwara, Y., Jen Hong, T., Shu Lih, O., Acharya, U.R.: Deep learning for healthcare applications based on physiological signals: a review. Comput. Methods Prog. Biomed. 161, 1–13 (2018). https://doi.org/10.1016/j.cmpb.2018.04.005

    Article  Google Scholar 

  9. Hadj Slimane, Z.E., Nait-Ali, A.: QRS complex detection using Empirical Mode Decomposition. Digit. Signal Process. 20(4), 1221–1228 (2010)

    Article  Google Scholar 

  10. Hu, Y.H., Tompkins, W., Urrusti, J., Afonso, V.: Applications of artificial neural networks for ECG signal detection and classification. J. Electrocardiol. 26, 66–73 (1993)

    Google Scholar 

  11. Kutlu, Y., Kuntalp, D.: Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients. Comput. Methods Prog. Biomed. 105, 257–267 (2012). https://doi.org/10.1016/j.cmpb.2011.10.002

    Article  Google Scholar 

  12. Li, C., Zheng, C., Tai, C.: Detection of ECG characteristic points by wavelet transforms. IEEE Trans. Biomed. Eng. 42(1), 21–28 (1995)

    Article  Google Scholar 

  13. Luz, E.J.d.S., Schwartz, W.R., Camara-Chavez, G., Menotti, D.: ECG-based heartbeat classification for arrhythmia detection: a survey. Comput. Methods Prog. Biomed. 127, 144–164 (2016). https://doi.org/10.1016/j.cmpb.2015.12.008

    Article  Google Scholar 

  14. Mark, R., Moody, G.: MIT-BIH-Arrhythmia Database. http://www.physionet.org/physiobank/database/mitdb

  15. Martinez, J., Almeida, R., Olmos, S., Rocha, A., Laguna, P.: A wavelet based ECG delineator: evaluation on standard database. IEEE Trans. Biomed. Eng. 51(4), 570–581 (2004)

    Article  Google Scholar 

  16. Martis, R., Acharya, U., Lim, C.: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed. Signal Process. Control 8(5), 437–448 (2013)

    Article  Google Scholar 

  17. Martis, R., Acharya, U., Mandana, K., Ray, A., Chakraborty, C.: Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Expert Syst. Appl. 39, 11792–11800 (2012). https://doi.org/10.1016/j.eswa.2012.04.072

    Article  Google Scholar 

  18. Moavenian, M., Khorrami, H.: A qualitative comparison of artificial neural networks and support vector machines in ECG arrhythmias classification. Expert Syst. Appl. 37, 3088–3093 (2010). https://doi.org/10.1016/j.eswa.2009.09.021

    Article  Google Scholar 

  19. Nason, G., Silverman, B.: The stationary wavelet transform and some statistical applications. In: Antoniadis, A., Oppenheim, G. (eds.) Wavelets and Statistics. LNS, vol. 103, pp. 281–299. Springer, New York (1995). https://doi.org/10.1007/978-1-4612-2544-7_17

    Chapter  MATH  Google Scholar 

  20. Pan, J., Tompkins, W.: A real time QRS detection algorithm. IEEE Trans. Biomed. Eng. 3(32), 230–236 (1985)

    Article  Google Scholar 

  21. Poli, R., Cagnoni, S., Valli, G.: Genetic design of optimum linear and nonlinear QRS detectors. IEEE Trans. Biomed. Eng. 42, 1137–1141 (1995)

    Article  Google Scholar 

  22. Sahoo, S., Kanungo, B., Behera, S., Sabut, S.: Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Measurement 24, 63–71 (2017). https://doi.org/10.1016/j.measurement.2017.05.022

    Article  Google Scholar 

  23. Thakor, N., Webstor, J., Thompkins, W.: Estimation of the QRS complex power spectra for design of a QRS filter. IEEE Trans. Biomed. Eng. 31(11), 702–706 (1984)

    Article  Google Scholar 

  24. Vapnik, V.: Statistical Learning Theory. Willey, New York (1998)

    MATH  Google Scholar 

  25. Zidelmala, Z., Amirou, A., Ould Abdeslam, D., Merckle, J.: ECG beat classifcation using a cost sensitive classifier. Comput. Methods Prog. Biomed. 111, 570–577 (2013). https://doi.org/10.1016/j.cmpb.2013.05.011

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the center for Scientific and Technical Research of Morocco (CNRST) (grant number: 18UH2C2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lahcen El Bouny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El Bouny, L., Khalil, M., Adib, A. (2019). ECG Beat Classification Based on Stationary Wavelet Transform. In: Renault, É., Boumerdassi, S., Leghris, C., Bouzefrane, S. (eds) Mobile, Secure, and Programmable Networking. MSPN 2019. Lecture Notes in Computer Science(), vol 11557. Springer, Cham. https://doi.org/10.1007/978-3-030-22885-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22885-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22884-2

  • Online ISBN: 978-3-030-22885-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics