Skip to main content

Age-Related Macular Degeneration

  • Chapter
  • First Online:
Fluorescence Lifetime Imaging Ophthalmoscopy
  • 377 Accesses

Abstract

Age-related macular degeneration (AMD) is a disorder of the central retina with increasing prevalence in the elderly population leading to severe vision loss over time. Different stages of AMD include early, intermediate and late AMD, latter summarizing exudative and non-exudative/atrophic forms of AMD. Different studies investigated FLIO in the respective stages of disease. In early AMD, a ring shaped prolongation of FLIO lifetimes can be seen. Drusenoid deposits may feature characteristic FLIO distribution depending on the configuration and location of the retinal deposits. In late AMD with geographic atrophy, generally prolonged FLIO lifetimes are measured, however, macular pigment in remaining photoreceptor segments within the central macula may lead to increased contribution of short lifetimes.

FLIO features characteristic lifetime patterns in AMD and may be used for diagnostic purposes for early retinal changes, and for monitoring of disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jager RD, Mieler WF, Miller JW. Age-related macular degeneration. N Engl J Med. 2008;358(24):2606–17.

    Article  CAS  Google Scholar 

  2. Wong WL, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2(2):e106–16.

    Article  Google Scholar 

  3. Friedman DS, et al. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol. 2004;122(4):564–72.

    Article  Google Scholar 

  4. Gehrs KM, et al. Age-related macular degeneration--emerging pathogenetic and therapeutic concepts. Ann Med. 2006;38(7):450–71.

    Article  Google Scholar 

  5. Hageman GS, Mullins RF. Molecular composition of drusen as related to substructural phenotype. Mol Vis. 1999;5:28.

    CAS  PubMed  Google Scholar 

  6. Hageman GS, et al. An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res. 2001;20(6):705–32.

    Article  CAS  Google Scholar 

  7. Anderson DH, et al. The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res. 2010;29(2):95–112.

    Article  CAS  Google Scholar 

  8. Anderson DH, et al. A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol. 2002;134(3):411–31.

    Article  CAS  Google Scholar 

  9. Ferris FL 3rd, et al. Clinical classification of age-related macular degeneration. Ophthalmology. 2013;120(4):844–51.

    Article  Google Scholar 

  10. Sunness JS. The natural history of geographic atrophy, the advanced atrophic form of age-related macular degeneration. Mol Vis. 1999;5:24–35.

    Google Scholar 

  11. Rosenfeld PJ, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1419–31.

    Article  CAS  Google Scholar 

  12. Chaikitmongkol V, Tadarati M, Bressler NM. Recent approaches to evaluating and monitoring geographic atrophy. Curr Opin Ophthalmol. 2016;27(3):217–23.

    Article  Google Scholar 

  13. Maguire P, Vine AK. Geographic atrophy of the retinal pigment epithelium. Am J Ophthalmol. 1986;102(5):621–5.

    Article  CAS  Google Scholar 

  14. Holz FG, et al. Geographic atrophy: clinical features and potential therapeutic approaches. Ophthalmology. 2014;121(5):1079–91.

    Article  Google Scholar 

  15. Boyer DS, et al. The pathophysiology of geographic atrophy secondary to age-related macular degeneration and the complement pathway as a therapeutic target. Retina. 2017;37(5):819–35.

    Article  Google Scholar 

  16. Kaya S, et al. Comparison of macular pigment in patients with age-related macular degeneration and healthy control subjects - a study using spectral fundus reflectance. Acta Ophthalmol. 2012;90(5):e399–403.

    Article  Google Scholar 

  17. Gorusupudi A, Nelson K, Bernstein PS. The age-related eye disease 2 study: micronutrients in the treatment of macular degeneration. Adv Nutr. 2017;8(1):40–53.

    Article  CAS  Google Scholar 

  18. Bernstein PS, et al. Lutein, zeaxanthin, and meso-zeaxanthin: the basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog Retin Eye Res. 2016;50:34–66.

    Article  CAS  Google Scholar 

  19. Age-Related Eye Disease Study 2 Research Group, et al. Secondary analyses of the effects of lutein/zeaxanthin on age-related macular degeneration progression: AREDS2 report no. 3. JAMA Ophthalmol. 2014;132(2):142–9.

    Article  Google Scholar 

  20. Lima VC, Rosen RB, Farah M. Macular pigment in retinal health and disease. Int J Retina Vitreous. 2016;2:19.

    Article  Google Scholar 

  21. Akuffo KO, et al. Relationship between macular pigment and visual function in subjects with early age-related macular degeneration. Br J Ophthalmol. 2017;101(2):190–7. https://doi.org/10.1136/bjophthalmol-2016-308418. Epub 2016 Apr 18. PMID: 27091854.

    Article  Google Scholar 

  22. Keenan TD, et al. Assessment of proteins associated with complement activation and inflammation in maculae of human donors homozygous risk at chromosome 1 CFH-to-F13B. Invest Ophthalmol Vis Sci. 2015;56(8):4870–9.

    Article  CAS  Google Scholar 

  23. Hannan JP, et al. Mapping the complement factor H-related protein 1 (CFHR1):C3b/C3d interactions. PLoS One. 2016;11(11):e0166200.

    Article  Google Scholar 

  24. Hammond CJ, et al. Genetic influence on early age-related maculopathy: a twin study. Ophthalmology. 2002;109(4):730–6.

    Article  Google Scholar 

  25. Seddon JM, Ajani UA, Mitchell BD. Familial aggregation of age-related maculopathy. Am J Ophthalmol. 1997;123(2):199–206.

    Article  CAS  Google Scholar 

  26. Meyers SM, Greene T, Gutman FA. A twin study of age-related macular degeneration. Am J Ophthalmol. 1995;120(6):757–66.

    Article  CAS  Google Scholar 

  27. Khan KN, et al. Differentiating drusen: Drusen and drusen-like appearances associated with ageing, age-related macular degeneration, inherited eye disease and other pathological processes. Prog Retin Eye Res. 2016;53:70–106.

    Article  CAS  Google Scholar 

  28. Dysli C, et al. Fluorescence lifetimes of Drusen in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2017;58(11):4856–62.

    Article  CAS  Google Scholar 

  29. Sauer L, et al. Patterns of fundus autofluorescence lifetimes in eyes of individuals with nonexudative age-related macular degeneration. Invest Ophthalmol Vis Sci. 2018;59(4):AMD65–77.

    Article  CAS  Google Scholar 

  30. Dysli C, et al. Fluorescence lifetime imaging ophthalmoscopy. Prog Retin Eye Res. 2017;60:120–43.

    Article  Google Scholar 

  31. Schweitzer D, et al. Towards metabolic mapping of the human retina. Microsc Res Tech. 2007;70(5):410–9.

    Article  CAS  Google Scholar 

  32. Curcio CA, et al. Subretinal drusenoid deposits in non-neovascular age-related macular degeneration: morphology, prevalence, topography, and biogenesis model. Retina. 2013;33(2):265–76.

    Article  Google Scholar 

  33. Spaide RF, Curcio CA. Drusen characterization with multimodal imaging. Retina. 2010;30(9):1441–54.

    Article  Google Scholar 

  34. Dysli C, Wolf S, Zinkernagel MS. Autofluorescence lifetimes in geographic atrophy in patients with age related macular degeneration. Invest Ophthalmol Vis Sci. 2016;57(6):2479–87.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chantal Dysli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dysli, C., Sauer, L. (2019). Age-Related Macular Degeneration. In: Zinkernagel, M., Dysli, C. (eds) Fluorescence Lifetime Imaging Ophthalmoscopy. Springer, Cham. https://doi.org/10.1007/978-3-030-22878-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22878-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22877-4

  • Online ISBN: 978-3-030-22878-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics