Skip to main content

Sometimes You Want to Go Where Everybody Knows Your Name

  • Conference paper
  • First Online:
Intelligent Computing (CompCom 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 997))

Included in the following conference series:

  • 1079 Accesses

Abstract

We introduce a new metric for measuring how well a model personalizes to a user’s specific preferences. We define personalization as a weighting between performance on user specific data and performance on a more general global dataset that represents many different users. This global term serves as a form of regularization that forces us to not overfit to individual users who have small amounts of data. In order to protect user privacy, we add the constraint that we may not centralize or share user data. We also contribute a simple experiment in which we simulate classifying sentiment for users with very distinct vocabularies. This experiment functions as an example of the tension between doing well globally on all users, and doing well on any specific individual user. It also provides a concrete example of how to employ our new metric to help reason about and resolve this tension. We hope this work can help frame and ground future work into personalization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fan, K., Aiello, A.E., Heller, K.A.: Bayesian models for heterogeneous personalized health data. arXiv preprint arXiv:1509.00110 (2015)

  2. Zhang, Y., Koren, J.: Efficient Bayesian hierarchical user modeling for recommendation system. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 47–54. ACM (2007)

    Google Scholar 

  3. Zigoris, P., Zhang, Y.: Bayesian adaptive user profiling with explicit & implicit feedback. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management, pp. 397–404. ACM (2006)

    Google Scholar 

  4. Shi, J., Chen, J., Zhu, J., Sun, S., Luo, Y., Gu, Y., Zhou, Y.: Zhusuan: a library for Bayesian deep learning. arXiv preprint arXiv:1709.05870 (2017)

  5. Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G., Corrado, G., Chai, W., Ispir, M., et al.: Wide & deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10. ACM (2016)

    Google Scholar 

  6. Al-Rfou, R., Pickett, M., Snaider, J., Sung, Y.-H., Strope, B., Kurzweil, R.: Conversational contextual cues: the case of personalization and history for response ranking. arXiv preprint arXiv:1606.00372 (2016)

  7. Chunseong Park, C., Kim, B., Kim, G.: Attend to you: personalized image captioning with context sequence memory networks. arXiv preprint arXiv:1704.06485 (2017)

  8. Chen, Z., Gao, B., Zhang, H., Zhao, Z., Liu, H., Cai, D.: User personalized satisfaction prediction via multiple instance deep learning. In: Proceedings of the 26th International Conference on World Wide Web, pp. 907–915. International World Wide Web Conferences Steering Committee (2017)

    Google Scholar 

  9. French, R.M.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3(4), 128–135 (1999)

    Google Scholar 

  10. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Nat. Acad. Sci. 114(13), 3521–3526 (2017)

    Google Scholar 

  11. Kemker, R., Abitino, A., McClure, M., Kanan, C.: Measuring catastrophic forgetting in neural networks. arXiv preprint arXiv:1708.02072 (2017)

  12. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory aware synapses: learning what (not) to forget. arXiv preprint arXiv:1711.09601 (2017)

  13. The European Parliament and the Council of the European Union. Regulation (eu) 2016/679 of the European parliament and of the council of 27 April 2016 (2016). http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=en. Accessed 23 Jan 2018

  14. State of California Department of Justice Office of the Attorney General. Privacy laws—state of California - department of justice - office of the attorney general. https://oag.ca.gov/privacy/privacy-laws. Accessed 22 Jan 2018

  15. McMahan, H.B., Moore, E., Ramage, D., y Arcas, B.A.: Federated learning of deep networks using model averaging (2016)

    Google Scholar 

  16. Konečnỳ, J., McMahan, H.B., Ramage, D., Richtárik, P.: Federated optimization: distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527 (2016)

  17. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016)

  18. Smith, V., Chiang, C.-K., Sanjabi, M., Talwalkar, A.: Federated multi-task learning. arXiv preprint arXiv:1705.10467 (2017)

  19. Malle, B., Giuliani, N., Kieseberg, P., Holzinger, A.: The more the merrier-federated learning from local sphere recommendations. In: International Cross-Domain Conference for Machine Learning and Knowledge Extraction, pp. 367–373. Springer (2017)

    Google Scholar 

  20. Dwork, C.: Differential privacy: a survey of results. In: International Conference on Theory and Applications of Models of Computation, pp. 1–19. Springer (2008)

    Google Scholar 

  21. Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K., Zhang, L.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318. ACM (2016)

    Google Scholar 

  22. Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C.D., Ng, A., Potts, C.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642 (2013)

    Google Scholar 

  23. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    Google Scholar 

  24. Kingma, D.P., Adam, J.B.: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  25. Raiman, J.: Stanford sentiment treebank loader in python. https://github.com/JonathanRaiman/pytreebank. Accessed 05 Jan 2018

  26. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)

    Google Scholar 

  27. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper, p. 151 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Reuben Brasher , Justin Wagle or Nat Roth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brasher, R., Wagle, J., Roth, N. (2019). Sometimes You Want to Go Where Everybody Knows Your Name. In: Arai, K., Bhatia, R., Kapoor, S. (eds) Intelligent Computing. CompCom 2019. Advances in Intelligent Systems and Computing, vol 997. Springer, Cham. https://doi.org/10.1007/978-3-030-22871-2_44

Download citation

Publish with us

Policies and ethics