Skip to main content

The Fouriest: High-Performance Micromagnetic Simulation of Spintronic Materials and Devices

  • Conference paper
  • First Online:
Intelligent Computing (CompCom 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 997))

Included in the following conference series:

Abstract

Micromagnetic modeling is a powerful tool for analysis of spintronic materials and devices. We have developed a new software named The Fouriest designed for micromagnetic modeling on Nvidia GPUs. Basically, the program solves the Landau-Lifshitz Equation on a 3-D grid, using Fast Fourier Transform for calculation demagnetization fields. The key advantage of the new code is that it can model not only a single magnetic system, but also an ensemble of ones, which is often required in spintronics. The performance of such calculations via our software is significantly higher than using other programs that do not support concurrent modeling of multiple systems. This performance gain is obtained by batching Fast Fourier Transforms of ensemble systems, giving a full utilization of all GPU parallelism levels. Systems in the ensemble being processed can differ from each other in their shape and physical parameters, and can even interact in various ways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. MuMAG – Micromagnetic Modeling Activity Group. https://www.ctcms.nist.gov/~rdm/mumag.org.html. Accessed 23 July 2018

  2. Abo, G.S., Hong, Y.K., Park, J., Lee, J., Lee, W., Choi, B.C.: Definition of magnetic exchange length. IEEE Trans. Mag. 49(8), 4937–4939 (2013)

    Google Scholar 

  3. Bagnérés, A., Durbiano, S.: 3D computation of the demagnetizing field in a magnetic material of arbitrary shape. Comput. Phys. Commun. 130(1–2), 54–74 (2000)

    Google Scholar 

  4. Bessarab, P.F., Uzdin, V.M., Jónsson, H.: Method for finding mechanism and activation energy of magnetic transitions, applied to skyrmion and antivortex annihilation. Comput. Phys. Commun. 196, 335–347 (2015)

    Google Scholar 

  5. Chang, R., Li, S., Lubarda, M., Livshitz, B., Lomakin, V.: Fastmag: fast micromagnetic simulator for complex magnetic structures. J. Appl. Phys. 109(7), 07D358 (2011)

    Google Scholar 

  6. Donahue, M.J.: A variational approach to exchange energy calculations in micromagnetics. J. Appl. Phys. 83(11), 6491–6493 (1998)

    Google Scholar 

  7. Donahue, M.J.: OOMMF user’s guide, version 1.0. Technical report (1999)

    Google Scholar 

  8. Donahue, M.J., McMichael, R.D.: Micromagnetics on curved geometries using rectangular cells: error correction and analysis. IEEE Trans. Magn. 43(6), 2878–2880 (2007)

    Google Scholar 

  9. Dudgeon, D.E., Mersereau, R.M.: Multidimensional Digital Signal Processing Prentice-Hall Signal Processing Series. Prentice-Hall, Englewood Cliffs (1984)

    Google Scholar 

  10. Fehlberg, E.: Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems (1969)

    Google Scholar 

  11. Henderson, A., Ahrens, J., Law, C., et al.: The ParaView Guide, vol. 366. Kitware Clifton Park, Clifton Park (2004)

    Google Scholar 

  12. Huai, Y.: Spin-transfer torque MRAM (STT-MRAM): challenges and prospects. AAPPS Bull. 18(6), 33–40 (2008)

    Google Scholar 

  13. Hunter, J.D.: Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007)

    Google Scholar 

  14. Ivanov, A.V.: Kinetic modeling of magnetic’s dynamic. Matematicheskoe Modelirovanie 19(10), 89–104 (2007)

    Google Scholar 

  15. Khvalkovskiy, A., Apalkov, D., Watts, S., Chepulskii, R., Beach, R., Ong, A., Tang, X., Driskill-Smith, A., Butler, W., Visscher, P., et al.: Basic principles of STT-MRAM cell operation in memory arrays. J. Phys. D: Appl. Phys. 46(7), 074,001 (2013)

    Google Scholar 

  16. Landau, L.D., Lifshitz, E.: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjet. 8, 153 (1935). http://cds.cern.ch/record/437299

  17. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  18. Lopez-Diaz, L., Aurelio, D., Torres, L., Martinez, E., Hernandez-Lopez, M., Gomez, J., Alejos, O., Carpentieri, M., Finocchio, G., Consolo, G.: Micromagnetic simulations using graphics processing units. J. Phys. D: Appl. Phys. 45(32), 323,001 (2012)

    Google Scholar 

  19. Miltat, J.E., Donahue, M.J.: Numerical micromagnetics: finite difference methods. Handb. Magn. Adv. Magn. Mater. 2, 14–15 (2007)

    Google Scholar 

  20. NVIDIA Corporation: CUDA C Programming Guide, version 9.2.148 edn (2018)

    Google Scholar 

  21. NVIDIA Corporation: CUFFT LIBRARY USER’S GUIDE, version 9.2.148 edn (2018)

    Google Scholar 

  22. Pramanik, T., Roy, U., Jadaun, P., Register, L.F., Banerjee, S.K.: Write error rates of in-plane spin-transfer-torque random access memory calculated from rare-event enhanced micromagnetic simulations. J. Magn. Magn. Mater. 467, 96–107 (2018)

    Google Scholar 

  23. Pramanik, T., et al.: Shape-engineered ferromagnets and micromagnetic simulation techniques for spin-transfer-torque random access memory. Ph.D. thesis (2018)

    Google Scholar 

  24. Requicha, A.A., Voelcker, H.B.: Constructive solid geometry (1977)

    Google Scholar 

  25. Roy, U., Kencke, D.L., Pramanik, T., Register, L.F., Banerjee, S.K.: Write error rate in spin-transfer-torque random access memory including micromagnetic effects. In: 2015 73rd Annual Device Research Conference (DRC), pp. 147–148. IEEE (2015)

    Google Scholar 

  26. Tan, X., Baras, J.S., Krishnaprasad, P.S.: Fast evaluation of demagnetizing field in three-dimensional micromagentics using multipole approximation. In: Smart Structures and Materials 2000: Mathematics and Control in Smart Structures, vol. 3984, pp. 195–202. International Society for Optics and Photonics (2000)

    Google Scholar 

  27. Vansteenkiste, A., Van de Wiele, B.: MUMAX: a new high-performance micromagnetic simulation tool. J. Magn. Magn. Mater. 323(21), 2585–2591 (2011)

    Google Scholar 

  28. Williams, T., Kelley, C., Bröker, H., Campbell, J., Cunningham, R., Denholm, D., Elber, E., Fearick, R., Grammes, C., Hart, L.: Gnuplot 4.5: An interactive plotting program 2011 (2017). http://www.gnuplot.info

  29. Wysin, G.M.: Demagnetization fields (2012)

    Google Scholar 

  30. Zipunova, E.V., Ivanov, A.V.: Selection of an optimal numerical scheme for simulation system of the landau-lifshitz equations considering temperature fluctuations. Matematicheskoe Modelirovanie 26(2), 33–49 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Pershin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pershin, I., Knizhnik, A., Levchenko, V., Ivanov, A., Potapkin, B. (2019). The Fouriest: High-Performance Micromagnetic Simulation of Spintronic Materials and Devices. In: Arai, K., Bhatia, R., Kapoor, S. (eds) Intelligent Computing. CompCom 2019. Advances in Intelligent Systems and Computing, vol 997. Springer, Cham. https://doi.org/10.1007/978-3-030-22871-2_16

Download citation

Publish with us

Policies and ethics