Skip to main content

Perovskite Photovoltaics: From Laboratory to Industry

  • Chapter
  • First Online:
Book cover High-Efficient Low-Cost Photovoltaics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 140))

Abstract

The following pages of this book will discuss the current state-of-the-art of ‘perovskite’ photovoltaic technology, that has been awe-inspiring in the last decade. Since the first edition of HELC-PV, perovskite solar cells appeared and have been the dominating research topic in photovoltaics, attracting tremendous scientific and public interest. The technology advanced rapidly, and now in 2018, there are already several companies existing with the aim of bringing this technology to the market. As such, it has been a pleasure and an honour for Saule Technologies to be approached by the editors to review the advancement of this swiftly developing field. While the fabrication of devices with record high efficiencies has been achieved already, there are still open questions regarding fundamental physical and chemical processes taking place in such a device. There are a vast number of publications available that scrutinize the accumulated knowledge and observations regarding this unique class of materials. As such, it is a challenging—yet rewarding task to write a chapter that gives an objective perspective on the topic. Our aim was to create something that provides the readers with a valuable overview that will stay relevant even when the current state-of-the art will be outdated. We intended to describe the basic principles that guide the characteristics of perovskites, and then connect them with their function in solar cells and the related scientific discoveries. We hope that this chapter will provide the reader with a basic framework of knowledge that can be referred to when reading future works dealing with perovskites. We hope that you will find this work helpful, and in case you do so—please do not hesitate to recommend it to your colleagues, friends and acquaintances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 01 May 2020

    The original version of the book was inadvertently published with typos in the abstract of Chapter 10, which have now been corrected. The book and chapter have been updated with the changes.

References

  1. Q. Chen et al., Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10, 355–396 (2015)

    Google Scholar 

  2. D.B. Mitzi, C.A. Feild, Z. Schlesinger, R.B. Laibowitz, Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3. J. Solid State Chem. 114, 159–163 (1995)

    Google Scholar 

  3. S. Wang, D.B. Mitzi, C.A. Feild, A. Guloys, Synthesis and characterization of [NH2C(I) = NH2]3MI5 (M = Sn, Pb): stereochemical activity in divalent tin and lead halides containing single (110) perovskite sheets. J. Am. Chem. Soc. 117, 5297–5302 (1995)

    Google Scholar 

  4. D.B. Mitzi, Solution-processed inorganic semiconductors. J. Mater. Chem. 14, 2355 (2004)

    Google Scholar 

  5. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Google Scholar 

  6. J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, 6.5% Efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088 (2011)

    Google Scholar 

  7. I. Chung, B. Lee, J. He, R.P.H. Chang, M.G. Kanatzidis, All-solid-state dye-sensitized solar cells with high efficiency. Nature 485, 486–489 (2012)

    ADS  Google Scholar 

  8. H.-S. Kim et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012)

    Google Scholar 

  9. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science (80-.). 338, 643–647 (2012)

    Google Scholar 

  10. S.D. Stranks, et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science (80-.). 342, 341–344 (2013)

    Google Scholar 

  11. L.M. Fraas, Low-Cost Solar Electric Power. Low-Cost Solar Electric Power 9783319075, (Springer International Publishing, 2014)

    Google Scholar 

  12. S.D. Stranks, H.J. Snaith, Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015)

    ADS  Google Scholar 

  13. N.-G. Park, M. Grätzel, T. Miyasaka, K. Zhu, K. Emery, Towards stable and commercially available perovskite solar cells. Nat. Energy 1, 16152 (2016)

    ADS  Google Scholar 

  14. V.M. Goldschmidt, Die Gesetze der Krystallochemie. Naturwissenschaften 14, 477–485 (1926)

    ADS  Google Scholar 

  15. W. Travis, E.N.K. Glover, H. Bronstein, D.O. Scanlon, R.G. Palgrave, On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem. Sci. 7, 4548–4556 (2016)

    Google Scholar 

  16. K. Wu et al., Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Phys. Chem. Chem. Phys. 16, 22476–22481 (2014)

    Google Scholar 

  17. M.A. Green et al., Solar cell efficiency tables (version 51). Prog. Photovolt. Res. Appl. 26, 3–12 (2018)

    Google Scholar 

  18. U.K. Mishra, J. Singh, Semiconductor Device Physics and Design 28–91 (Springer Netherlands, 2008). https://doi.org/10.1007/978-1-4020-6481-4_2

  19. A.S. Lin, et al., High mechanical strength thin HIT solar cells with graphene back contact. IEEE Photonics J. 9, (2017)

    Google Scholar 

  20. K. Yoshikawa, et al., Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, (2017)

    Google Scholar 

  21. W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan, S.-H. Wei, Halide perovskite materials for solar cells: a theoretical review. J. Mater. Chem. A 00, 1–17 (2015)

    ADS  Google Scholar 

  22. P. Umari, E. Mosconi, F. De Angelis, Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 4, 4467 (2015)

    Google Scholar 

  23. M. Kot, K. Wojciechowski, H. Snaith, D. Schmeißer, Evidence of nitrogen contribution to the electronic structure of the CH3NH3PbI3 perovskite. Chem. A Eur. J. 24, 3539–3544 (2018)

    Google Scholar 

  24. W. Tress, Perovskite solar cells on the way to their radiative efficiency limit—insights into a success story of high open-circuit voltage and low recombination. Adv. Energy Mater. 7, 1602358 (2017)

    Google Scholar 

  25. P. Gao, M. Grätzel, M.K. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7, 2448–2463 (2014)

    Google Scholar 

  26. S. A. Kulkarni, et al., Band-gap tuning of lead halide perovskites using a sequential deposition process. J. Mater. Chem. A 2, 9221 (2014)

    Google Scholar 

  27. G.E. Eperon et al., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982 (2014)

    Google Scholar 

  28. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013)

    Google Scholar 

  29. A.R. Denton, N.W. Ashcroft, Vegard’s law. Phys. Rev. A 43, 3161–3164 (1991)

    ADS  Google Scholar 

  30. D.J. Slotcavage, H.I. Karunadasa, M.D. McGehee, Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 1, 1199–1205 (2016)

    Google Scholar 

  31. K. Yan et al., Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. J. Am. Chem. Soc. 137, 4460–4468 (2015)

    Google Scholar 

  32. T.M. Koh et al., Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J. Phys. Chem. C 118, 16458–16462 (2014)

    Google Scholar 

  33. N.J. Jeon et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015)

    ADS  Google Scholar 

  34. M. Saliba, et al., Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science (80-.) 354, 206–209 (2016)

    Google Scholar 

  35. M. Abdi-Jalebi et al., Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018)

    ADS  Google Scholar 

  36. G.E. Eperon et al., Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3, 19688–19695 (2015)

    Google Scholar 

  37. M. Saliba et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016)

    Google Scholar 

  38. P. Gratia et al., The many faces of mixed ion perovskites: unraveling and understanding the crystallization process. ACS Energy Lett. 2, 2686–2693 (2017)

    Google Scholar 

  39. J. Liang, et al., CsPb0. 9Sn0. 1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability. J. Am. Chem. Soc. 139, 14009–14012 (2017)

    Google Scholar 

  40. H. Chen et al., Inorganic perovskite solar cells: a rapidly growing field. Sol. RRL 2, 1700188 (2018)

    Google Scholar 

  41. B. Brunetti, C. Cavallo, A. Ciccioli, G. Gigli, A. Latini, on the thermal and thermodynamic (in) stability of methylammonium lead halide perovskites. Sci. Rep. 6, (2016)

    Google Scholar 

  42. B. Conings, Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. (2015)

    Google Scholar 

  43. C.C. Stoumpos et al., Ruddlesden-popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016)

    Google Scholar 

  44. H. Tsai et al., High-efficiency two-dimensional ruddlesden-popper perovskite solar cells. Nature 536, 312–316 (2016)

    ADS  Google Scholar 

  45. I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa, A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 53, 11232–11235 (2014)

    Google Scholar 

  46. G. Grancini et al., One-year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 (2017)

    ADS  Google Scholar 

  47. P.K. Nayak et al., Mechanism for rapid growth of organic–inorganic halide perovskite crystals. Nat. Commun. 7, 13303 (2016)

    ADS  Google Scholar 

  48. A. Dubey et al., Strategic review on processing routes towards highly efficient perovskite solar cells. J. Mater. Chem. A (2018). https://doi.org/10.1039/C7TA08277K

    Article  Google Scholar 

  49. Z. Song et al., A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques. Energy Environ. Sci. 10, 1297–1305 (2017)

    Google Scholar 

  50. D.P. McMeekin, et al., Crystallization kinetics and morphology control of formamidinium–cesium mixed-cation lead mixed-halide perovskite via tunability of the colloidal precursor solution. Adv. Mater. 29, (2017)

    Google Scholar 

  51. S.I. Seok, M. Grätzel, N.-G. Park, Methodologies toward highly efficient perovskite solar cells. Small 1704177 (2018)

    Google Scholar 

  52. J.S. Manser, M.I. Saidaminov, J.A. Christians, O.M. Bakr, P.V. Kamat, Making and breaking of lead halide perovskites. Acc. Chem. Res. 49, 330–338 (2016)

    Google Scholar 

  53. J.C. Hamill, J. Schwartz, Y.-L. Loo, Influence of solvent coordination on hybrid organic-inorganic perovskite formation. ACS Energy Lett. 3, 92–97 (2018)

    Google Scholar 

  54. X. Cao et al., Elucidating the key role of a lewis base solvent in the formation of perovskite films fabricated from the lewis adduct approach. ACS Appl. Mater. Interfaces. 9, 32868–32875 (2017)

    Google Scholar 

  55. L. Etgar et al., Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells. J. Am. Chem. Soc. 134, 17396–17399 (2012)

    Google Scholar 

  56. Y.-J. Jeon et al., Planar heterojunction perovskite solar cells with superior reproducibility. Sci. Rep. 4, 6953 (2014)

    Google Scholar 

  57. M. Yang et al., Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nat. Energy 2, 17038 (2017)

    ADS  Google Scholar 

  58. D.T. Moore, et al., Crystallization kinetics of organic–inorganic trihalide perovskites and the role of the lead anion in crystal growth. J. Am. Chem. Soc. 150209140709004 (2015). https://doi.org/10.1021/ja512117e

  59. Y. Wu et al., Retarding the crystallization of PbI 2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 7, 2934–2938 (2014)

    Google Scholar 

  60. C.-C. Chueh et al., The roles of alkyl halide additives in enhancing perovskite solar cell performance. J. Mater. Chem. A 3, 9058–9062 (2015)

    Google Scholar 

  61. P.-W. Liang et al., Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 26, 3748–3754 (2014)

    Google Scholar 

  62. S.D. Stranks, P.K. Nayak, W. Zhang, T. Stergiopoulos, H.J. Snaith, Formation of thin films of organic-inorganic perovskites for high-efficiency solar cells. Angew. Chem. Int. Ed. 54, 3240–3248 (2015)

    Google Scholar 

  63. S. Colella et al., MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. Chem. Mater. 25, 4613 (2013)

    Google Scholar 

  64. A.R. Pascoe et al., Directing nucleation and growth kinetics in solution-processed hybrid perovskite thin-films. Sci. China Mater. 60, 617–628 (2017)

    Google Scholar 

  65. C. Bi et al., Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 6, 1–7 (2015)

    Google Scholar 

  66. N.J. Jeon et al., Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 1–7 (2014)

    ADS  Google Scholar 

  67. M. Xiao et al., A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. Int. Ed. 53, 9898–9903 (2014)

    Google Scholar 

  68. H. Zhang et al., Understanding the effect of delay time of solvent washing on the performances of perovskite solar cells. ACS Omega 2, 7666–7671 (2017)

    Google Scholar 

  69. T. Jesper Jacobsson, et al., Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy Environ. Sci. 9, 1706–1724 (2016)

    Google Scholar 

  70. J.P. Correa-Baena, et al., Unbroken perovskite: interplay of morphology, electro-optical properties, and ionic movement. Adv. Mater. 5031–5037 (2016). https://doi.org/10.1002/adma.201600624

  71. K. Liang, D.B. Mitzi, M.T. Prikas, Synthesis and characterization of organic − inorganic perovskite thin films prepared using a versatile two-step dipping technique. Chem. Mater. 10, 403–411 (1998)

    Google Scholar 

  72. J. Burschka et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)

    ADS  Google Scholar 

  73. H. Chen, Two-step sequential deposition of organometal halide perovskite for photovoltaic application. Adv. Funct. Mater. 27, 1605654 (2017)

    Google Scholar 

  74. X. Cao et al., Control of the morphology of PbI 2 films for efficient perovskite solar cells by strong Lewis base additives. J. Mater. Chem. C 5, 7458–7464 (2017)

    Google Scholar 

  75. W.S. Yang, et al., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science (80-.) 348, 1234–1237 (2015)

    Google Scholar 

  76. M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013)

    ADS  Google Scholar 

  77. O. Malinkiewicz et al., Perovskite solar cells employing organic charge-transport layers. Nat. Photonics 8, 128–132 (2014)

    ADS  Google Scholar 

  78. C. Momblona et al., Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers. Energy Environ. Sci. 9, 3456–3463 (2016)

    Google Scholar 

  79. Q. Chen et al., Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622–625 (2014)

    Google Scholar 

  80. Y.H. Chiang, H.M. Cheng, M.H. Li, T.F. Guo, P. Chen, Low-pressure vapor-assisted solution process for thiocyanate-based pseudohalide perovskite solar cells. Chemsuschem 9, 2620–2627 (2016)

    Google Scholar 

  81. H. Snaith, Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013)

    Google Scholar 

  82. U. Wurfel, A. Cuevas, P. Wurfel, Charge carrier separation in solar cells. IEEE J. Photovolt. 5, 461–469 (2015)

    Google Scholar 

  83. Z. Guo, L. Gao, C. Zhang, Z. Xu, T. Ma, Low-temperature processed non-TiO 2 electron selective layers for perovskite solar cells. J. Mater. Chem. A 6, 4572–4589 (2018)

    Google Scholar 

  84. Z. Song, S.C. Watthage, A.B. Phillips, M.J. Heben, Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. J. Photonics Energy 6, 22001 (2016)

    Google Scholar 

  85. W.S. Yang, et al., Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science (80-.) 356, (2017)

    Google Scholar 

  86. J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6, 1739 (2013)

    Google Scholar 

  87. R.W. Johnson, A. Hultqvist, S.F. Bent, A brief review of atomic layer deposition: from fundamentals to applications. Mater. Today 17, 236–246 (2014)

    Google Scholar 

  88. Y. Xiao, G. Han, H. Zhou, J. Wu, An efficient titanium foil based perovskite solar cell: using a titanium dioxide nanowire array anode and transparent poly(3,4-ethylenedioxythiophene) electrode. RSC Adv. 6, 2778–2784 (2016)

    Google Scholar 

  89. L. Calió, S. Kazim, M. Grätzel, S. Ahmad, Hole-transport materials for perovskite solar cells. Angew. Chem. Int. Ed. 55, 14522–14545 (2016)

    Google Scholar 

  90. I. Lee, J.H. Yun, H.J. Son, T.S. Kim, Accelerated degradation due to weakened adhesion from Li-TFSI additives in perovskite solar cells. ACS Appl. Mater. Interfaces. 9, 7029–7035 (2017)

    Google Scholar 

  91. M. Saliba et al., A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nat. Energy 1, 15017 (2016)

    ADS  Google Scholar 

  92. Chen, J. & Park, N.-G. Inorganic Hole Transporting Materials for Stable and High Efficiency Perovskite Solar Cells. J. Phys. Chem. C acs.jpcc.8b01177 (2018). https://doi.org/10.1021/acs.jpcc.8b01177

  93. J.-Y. Jeng et al., CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727–3732 (2013)

    Google Scholar 

  94. J.C. Yu et al., Highly efficient and stable inverted perovskite solar cell employing PEDOT:GO composite layer as a hole transport layer. Sci. Rep. 8, 1070 (2018)

    ADS  Google Scholar 

  95. Y. Fang, C. Bi, D. Wang, J. Huang, The functions of fullerenes in hybrid perovskite solar cells. ACS Energy Lett. 2, 782–794 (2017)

    Google Scholar 

  96. K.A. Bush, et al., 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017)

    Google Scholar 

  97. A. Guchhait, et al., Over 20% efficient CIGS–perovskite tandem solar cells. ACS Energy Lett. 807–812 (2017). https://doi.org/10.1021/acsenergylett.7b00187

  98. De A. Vos, Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D. Appl. Phys. 13, 839–846 (1980)

    Google Scholar 

  99. G.E. Eperon, et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science (80-.). 354, 861–865 (2016)

    Google Scholar 

  100. F. Hao, C.C. Stoumpos, R.P.H. Chang, M.G. Kanatzidis, Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136, 8094–8099 (2014)

    Google Scholar 

  101. G.E. Eperon, M.T. Hörantner, H.J. Snaith, Metal halide perovskite tandem and multiple-junction photovoltaics. Nat. Rev. Chem. 1, 0095 (2017)

    Google Scholar 

  102. E.T. Hoke et al., Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015)

    Google Scholar 

  103. C.S. Ponseca et al., Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J. Am. Chem. Soc. 136, 5189–5192 (2014)

    Google Scholar 

  104. G.D. Scholes, G. Rumbles, Excitons in nanoscale systems. Nat. Mater. 5, 683–696 (2006)

    ADS  Google Scholar 

  105. V. D’Innocenzo et al., Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014)

    ADS  Google Scholar 

  106. E.J. Juarez-Perez et al., Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 2390–2394 (2014)

    Google Scholar 

  107. Q. Lin, A. Armin, R.C.R. Nagiri, P.L. Burn, P. Meredith, Electro-optics of perovskite solar cells. Nat. Photonics 9, 106–112 (2015)

    ADS  Google Scholar 

  108. G. Xing, et al., Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science (80-.). 342, 344–347 (2013)

    Google Scholar 

  109. O.D. Miller, E. Yablonovitch, S.R. Kurtz, Intense internal and external fluorescence as solar cell approach the SQ efficiency limit. Photovolt. IEEE J. 2, 1–27 (2012)

    Google Scholar 

  110. T.S. Sherkar et al., Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions. ACS Energy Lett. 2, 1214–1222 (2017)

    Google Scholar 

  111. D. Meggiolaro et al., Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy Environ. Sci. 11, 702–713 (2018)

    Google Scholar 

  112. J.S. Yun et al., Critical role of grain boundaries for ion migration in formamidinium and methylammonium lead halide perovskite solar cells. Adv. Energy Mater. 6, 1–8 (2016)

    ADS  Google Scholar 

  113. R. Brenes et al., Metal halide perovskite polycrystalline films exhibiting properties of single crystals. Joule 1, 155–167 (2017)

    Google Scholar 

  114. W.J. Yin, T. Shi, Y. Yan, Unusual defect physics in CH3NH3PbI3perovskite solar cell absorber. Appl. Phys. Lett. 104, (2014)

    Google Scholar 

  115. D. Meggiolaro, et al., Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy Environ. Sci. 0–30 (2018). https://doi.org/10.1039/c8ee00124c

  116. C. Li et al., Iodine migration and its effect on hysteresis in perovskite solar cells. Adv. Mater. 28, 2446–2454 (2016)

    ADS  Google Scholar 

  117. T. Niu et al., Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater. 30, 1706576 (2018)

    Google Scholar 

  118. H.J. Snaith et al., Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014)

    Google Scholar 

  119. W. Tress, et al., Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 995–1004 (2015). https://doi.org/10.1039/c4ee03664f

  120. W. Tress, Metal halide perovskites as mixed electronic-ionic conductors: challenges and opportunities—from hysteresis to memristivity. J. Phys. Chem. Lett. 8, 3106–3114 (2017)

    Google Scholar 

  121. E.L. Unger et al., Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 7, 3690–3698 (2014)

    Google Scholar 

  122. K. Domanski, E.A. Alharbi, A. Hagfeldt, M. Grätzel, W. Tress, Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat. Energy 3, 61–67 (2018)

    ADS  Google Scholar 

  123. J.-P. Correa-Baena et al., The rapid evolution of highly efficient perovskite solar cells. Energy Environ. Sci. 10, 710–727 (2017)

    Google Scholar 

  124. J.-S. Park, H. Chae, H.K. Chung, S.I. Lee, Thin film encapsulation for flexible AM-OLED: a review. Semicond. Sci. Technol. 26, 034001 (2011)

    ADS  Google Scholar 

  125. A. Guerrero et al., Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano 10, 218–224 (2016)

    Google Scholar 

  126. E. Bi et al., Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells. Nat. Commun. 8, 15330 (2017)

    ADS  Google Scholar 

  127. A. Babayigit et al., Assessing the toxicity of Pb-and Sn-based perovskite solar cells in model organism Danio rerio. Sci. Rep. 6, 1–11 (2016)

    Google Scholar 

  128. A. Abate, Perovskite solar cells go lead free. Joule 1, 659–664 (2017)

    Google Scholar 

  129. M. Konstantakou, T. Stergiopoulos, A critical review on tin halide perovskite solar cells. J. Mater. Chem. A 5, 11518–11549 (2017)

    Google Scholar 

  130. S.J. Lee et al., Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2-pyrazine complex. J. Am. Chem. Soc. 138, 3974–3977 (2016)

    Google Scholar 

  131. S. Nagane et al., Lead-free perovskite semiconductors based on germanium-tin solid solutions: structural and optoelectronic properties. J. Phys. Chem. C 122, 5940–5947 (2018)

    Google Scholar 

  132. C. Wu et al., The dawn of lead-free perovskite solar cell: highly stable double perovskite Cs2AgBiBr6 film. Adv. Sci. 5, 1700759 (2018)

    Google Scholar 

  133. X. Zhao et al., Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 139, 2630–2638 (2017)

    Google Scholar 

  134. G. Volonakis et al., Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap. J. Phys. Chem. Lett. 8, 772–778 (2017)

    Google Scholar 

  135. M. Cai, et al., Cost-performance analysis of perovskite solar modules. Adv. Sci. 4, (2017)

    Google Scholar 

  136. F. Taghizadeh-Hesary, N. Yoshino, Y. Inagaki, Empirical analysis of factors influencing price of solar modules (2018)

    Google Scholar 

  137. He, X. Perovskite Photovoltaics 2018–2028. (2018)

    Google Scholar 

  138. I. Cardinaletti et al., Organic and perovskite solar cells for space applications. Sol. Energy Mater. Sol. Cells 182, 121–127 (2018)

    Google Scholar 

  139. M. Kaltenbrunner et al., Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. Nat. Mater. 14, 1032–1039 (2015)

    ADS  Google Scholar 

  140. S. De Wolf et al., Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014)

    Google Scholar 

  141. S. Pang et al., NH2CH═NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater. 26, 1485–1491 (2014)

    ADS  Google Scholar 

  142. J.-H. Im, H.-S. Kim, N.-G. Park, Morphology-photovoltaic property correlation in perovskite solar cells: one-step versus two-step deposition of CH3 NH3 PbI3. APL Mater. 2, 081510 (2014)

    ADS  Google Scholar 

  143. B. Chen, M. Yang, S. Priya, K. Zhu, Origin of J-V hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 905–917 (2016)

    Google Scholar 

  144. K. Wojciechowski, D. Forgács, T. Rivera, Industrial opportunities and challenges for perovskite photovoltaic technology. Sol. RRL 3, 1900144 (2019). https://doi.org/10.1002/solr.201900144

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Forgacs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Forgacs, D., Wojciechowski, K., Malinkiewicz, O. (2020). Perovskite Photovoltaics: From Laboratory to Industry. In: Petrova-Koch, V., Hezel, R., Goetzberger, A. (eds) High-Efficient Low-Cost Photovoltaics. Springer Series in Optical Sciences, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-030-22864-4_10

Download citation

Publish with us

Policies and ethics