Skip to main content

Circular Economy Based on Residue Valorization

  • Chapter
  • First Online:
Utilising Biomass in Biotechnology

Abstract

To meet the population’s demand for products and services, it is inevitable that industry will interact with the environment during the search for inputs and outputs in the production processes. With the globalization of the market, it is no longer efficient or sustainable for companies to employ linear economic models in which the fundamental idea is to extract raw material, transform it, and discard it at the end of its life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murray A, Skene K, Haynes K (2017) The circular economy: an interdisciplinary exploration of the concept and application in a global context. J Bus Ethics 140:369–380. https://doi.org/10.1007/s10551-015-2693-2

    Article  Google Scholar 

  2. Twigger HA (2016) Shifting perceptions: the reknit revolution. In: Centre for circular design circular transitions. University of the Arts of London, pp 57–67

    Google Scholar 

  3. Bonciu F (2014) The European Economy; From a linear to a circular economy. Rom J Eur Aff 14:78–91

    Google Scholar 

  4. Winkler MS, Krieger GR, Divall MJ, Singer BH, Utzinger J (2012) Health impact assessment of industrial development projects: a spatio-temporal visualization. Geospat Health 6:299–301. https://doi.org/10.4081/gh.2012.148

    Article  Google Scholar 

  5. Park H-S, Behera SK (2014) Methodological aspects of applying eco-efficiency indicators to industrial symbiosis networks. J Clean Prod 64:478–485. https://doi.org/10.1016/j.jclepro.2013.08.032

    Article  Google Scholar 

  6. Molina-Moreno V, Leyva-Díaz CJ, Llorens-Montes JF, Cortés-García JF (2017) Design of indicators of circular economy as instruments for the evaluation of sustainability and efficiency in wastewater from pig farming industry. Water 9

    Google Scholar 

  7. Toop TA, Ward S, Oldfield T, Hull M, Kirby ME, Theodorou MK (2017) AgroCycle—developing a circular economy in agriculture. Energy Procedia 123:76–80. https://doi.org/10.1016/j.egypro.2017.07.269

    Article  Google Scholar 

  8. AgroCycle (2019) AgroCycle protocol rules 2019. http://www.agrocycle.eu/#project

  9. Wang X, Yang G, Feng Y, Ren G, Han X (2012) Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresour Technol 120:78–83. https://doi.org/10.1016/j.biortech.2012.06.058

    Article  Google Scholar 

  10. Guendouz J, Buffière P, Cacho J, Carrère M, Delgenes J-P (2010) Dry anaerobic digestion in batch mode: design and operation of a laboratory-scale, completely mixed reactor. Waste Manag 30:1768–1771. https://doi.org/10.1016/j.wasman.2009.12.024

    Article  Google Scholar 

  11. Pawelczyk A (2005) EU policy and legislation on recycling of organic wastes to agriculture. International Society for Animal Hygiene

    Google Scholar 

  12. Liu Y, Kwag J-H, Kim J-H, Ra C (2011) Recovery of nitrogen and phosphorus by struvite crystallization from swine wastewater. Desalination 277:364–369. https://doi.org/10.1016/j.desal.2011.04.056

    Article  Google Scholar 

  13. Fleming, C.A., Ferron CJ, Dreisinger DB, O’Kane PT (2000) A process for the simultaneous leaching and recovery of gold, platinum group metals and base metals from ores and concentrates. In: Taylor P (ed) EPD Proc TMS, Warrendale, 419–443

    Google Scholar 

  14. Venturin B, Frumi Camargo A, Scapini T, Mulinari J, Bonatto C, Bazoti S, Pereira Siqueira D, Maria Colla L, Alves SL, Paulo Bender J, Luís Radis Steinmetz R, Kunz A, Fongaro G, Treichel H (2018) Effect of pretreatments on corn stalk chemical properties for biogas production purposes. Bioresour Technol 266. https://doi.org/10.1016/j.biortech.2018.06.069

  15. Sanchez S, Demain AL (2017) Chapter 1: Useful microbial enzymes—an introduction. In: Brahmachari G (ed) B of ME. Academic Press, pp 1–11

    Google Scholar 

  16. Shakir E, Zahraw Z, Al-Obaidy AHMJ (2017) Environmental and health risks associated with reuse of wastewater for irrigation. Egypt J Pet 26:95–102. https://doi.org/10.1016/j.ejpe.2016.01.003

    Article  Google Scholar 

  17. Fongaro G, Viancelli A, Magri ME, Elmahdy EM, Biesus LL, Kich JD, Kunz A, Barardi CRM (2014) Utility of specific biomarkers to assess safety of swine manure for biofertilizing purposes. Sci Total Environ 479–480:277–283. https://doi.org/10.1016/j.scitotenv.2014.02.004

    Article  Google Scholar 

  18. Guerini Filho M, Lumi M, Hasan C, Marder M, Leite LCS, Konrad O (2018) Energy recovery from wine sector wastes: a study about the biogas generation potential in a vineyard from Rio Grande do Sul, Brazil. Sustain Energy Technol Assess 29:44–49. https://doi.org/10.1016/j.seta.2018.06.006

    Article  Google Scholar 

  19. Krzywika A, Szwaja S (2017) Putrid potatoes as biomass charge to an agricultural biomass-to-biogas power plant. Energy Procedia 118:40–45. https://doi.org/10.1016/j.egypro.2017.07.008

    Article  Google Scholar 

  20. Neves PV, Pitarelo AP, Ramos LP (2016) Production of cellulosic ethanol from sugarcane bagasse by steam explosion: effect of extractives content, acid catalysis and different fermentation technologies. Bioresour Technol 208:184–194. https://doi.org/10.1016/j.biortech.2016.02.085

    Article  Google Scholar 

  21. Milano J, Ong HC, Masjuki HH, Chong WT, Lam MK, Loh PK, Vellayan V (2016) Microalgae biofuels as an alternative to fossil fuel for power generation. Renew Sustain Energy Rev 58:180–197. https://doi.org/10.1016/j.rser.2015.12.150

    Article  Google Scholar 

  22. Nizami AS, Rehan M, Waqas M, Naqvi M, Ouda OKM, Shahzad K, Miandad R, Khan MZ, Syamsiro M, Ismail IMI, Pant D (2017) Waste biorefineries: enabling circular economies in developing countries. Bioresour Technol 241:1101–1117. https://doi.org/10.1016/j.biortech.2017.05.097

    Article  Google Scholar 

  23. Clift R, Allwood J (2011) Rethinking the economy. The Chemical Engineer

    Google Scholar 

  24. Pauli GA (2010) The blue economy 10 years, 100 innovations, 100 million jobs. Paradigm Publications, Taos, New Mexico

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Treichel .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Treichel, H., Fongaro, G., Scapini, T., Frumi Camargo, A., Spitza Stefanski, F., Venturin, B. (2020). Circular Economy Based on Residue Valorization. In: Utilising Biomass in Biotechnology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-22853-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22853-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22852-1

  • Online ISBN: 978-3-030-22853-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics