Skip to main content

Targeting Interleukin-6 in Ocular Inflammatory Diseases

  • Chapter
  • First Online:
Treatment of Non-infectious Uveitis

Abstract

Interleukin-6 (IL-6) is a key cytokine that is strongly upregulated during infection and inflammation. Featuring pleiotropic activity, IL-6 is responsible for the induction of hepatic acute-phase proteins, trafficking of acute and chronic inflammatory cells, differentiation of adaptive T-cell responses, homeostatic regulation, and tissue regeneration. Dysregulated IL-6 production has been associated with the development of a wide variety of systemic immune-mediated, chronic diseases, and even certain types of cancer. From the ocular perspective, significant elevation of IL-6 has been found in ocular fluids derived from diabetic macular edema, retinal vein occlusion, and refractory/chronic uveitis patients. During the last decade, tocilizumab, a neutralizing monoclonal antibody (mAb) that targets the IL-6 receptor (IL-6R), has been approved for the treatment of rheumatoid arthritis in more than 100 countries worldwide. Furthermore, it has been reported to be effective for the treatment of a number of autoimmune diseases including noninfectious uveitis and its associated macular edema. Currently, numerous candidate molecular strategies targeting the IL-6 signaling pathways are in progress through clinical trials in various disorders. Herein, we discuss the basic biology of IL-6 and its pathological role in the development of immune-mediated conditions, particularly focusing on inflammatory eye diseases. It also provides an overview of the on-going clinical trials with the new anti-IL-6 mAbs and their potential use in the clinical practice.

None of the authors has any proprietary/financial interest to disclose.

This study received no financial support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kishimoto T, Hirano T, Kikutani H, Muraguchi A. Delineation of human B cell differentiation: immunological and molecular characterization of human B cell differentiation factor (BSF-2). Adv Exp Med Biol. 1987;213:177–88.

    Article  CAS  Google Scholar 

  2. Wolvekamp MC, Marquet RL. Interleukin-6: historical background, genetics and biological significance. Immunol Lett. 1990;24:1–9.

    Article  CAS  Google Scholar 

  3. Yamasaki K, Taga T, Hirata Y, Yawata H, Kawanishi Y, Seed B, Taniguchi T, Hirano T, Kishimoto T. Cloning and expression of the human interleukin-6 (BSF-2/IFN beta 2) receptor. Science. 1988;241:825–8.

    Article  CAS  Google Scholar 

  4. Lin P. Targeting interleukin-6 for noninfectious uveitis. Clin Ophthalmol. 2015;9:1697–702.

    Article  CAS  Google Scholar 

  5. Yoshimura T, Sonoda KH, Ohguro N, Ohsugi Y, Ishibashi T, Cua DJ, Kobayashi T, Yoshida H, Yoshimura A. Involvement of Th17 cells and the effect of anti-IL-6 therapy in autoimmune uveitis. Rheumatology (Oxford). 2009;48:347–54.

    Article  CAS  Google Scholar 

  6. Perez VL, Papaliodis GN, Chu D, Anzaar F, Christen W, Foster CS. Elevated levels of interleukin 6 in the vitreous fluid of patients with pars planitis and posterior uveitis: the Massachusetts eye & ear experience and review of previous studies. Ocul Immunol Inflamm. 2004;12:193–201.

    Article  CAS  Google Scholar 

  7. Kang S, Tanaka T, Kishimoto T. Therapeutic uses of anti-interleukin-6 receptor antibody. Int Immunol. 2015;27:21–9.

    Article  CAS  Google Scholar 

  8. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6:a016295.

    Article  Google Scholar 

  9. Calabrese LH, Rose-John S. IL-6 biology: implications for clinical targeting in rheumatic disease. Nat Rev Rheumatol. 2014;10:720–7.

    Article  CAS  Google Scholar 

  10. Boulanger MJ, Chow DC, Brevnova EE, Garcia KC. Hexameric structure and assembly of the interleukin-6/IL-6 alpha-receptor/gp130 complex. Science. 2003;300:2101–4.

    Article  CAS  Google Scholar 

  11. Schmitz J, Weissenbach M, Haan S, Heinrich PC, Schaper F. SOCS3 exerts its inhibitory function on interleukin-6 signal transduction through the SHP2 recruitment sites of gp130. J Biol Chem. 2000;275:12848–56.

    Article  CAS  Google Scholar 

  12. Narazaki M, Yasukawa K, Saito T, Ohsugi Y, Fukui H, Koishihara Y, Yancopoulos GD, Taga T, Kishimoto T. Soluble forms of the interleukin-6 signal-transducing receptor component gp130 in human serum possessing a potential to inhibit signals through membrane-anchored gp130. Blood. 1993;82:1120–6.

    CAS  PubMed  Google Scholar 

  13. Rose-John S. IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int J Biol Sci. 2012;8:1237–47.

    Article  CAS  Google Scholar 

  14. Kishimoto T, Akira S, Narazaki M, Taga T. Interleukin-6 family of cytokines and gp130. Blood. 1995;86:1243–54.

    CAS  PubMed  Google Scholar 

  15. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 2011;181:878–88.

    Article  Google Scholar 

  16. Hoge J, Yan I, Jänner N, et al. IL-6 controls the innate immune response against Listeria monocytogenes via classical IL-6 signaling. J Immunol. 2013;190:703–11.

    Article  CAS  Google Scholar 

  17. Matzinger P. The danger model: a renewed sense of self. Science. 2002;296:301–4.

    Article  CAS  Google Scholar 

  18. Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J. 1990;265:621–36.

    Article  CAS  Google Scholar 

  19. Devaraj S, Kumaresan PR, Jialal I. C-reactive protein induces release of both endothelial microparticles and circulating endothelial cells in vitro and in vivo: further evidence of endothelial dysfunction. Clin Chem. 2011;57:1757–61.

    Article  CAS  Google Scholar 

  20. Jensen LE, Whitehead AS. Regulation of serum amyloid A protein expression during the acute-phase response. Biochem J. 1998;334:489–503.

    Article  CAS  Google Scholar 

  21. Eriksson S, Janciauskiene S, Lannfelt L. Alpha 1-antichymotrypsin regulates Alzheimer beta-amyloid peptide fibril formation. Proc Natl Acad Sci U S A. 1995;92:2313–7.

    Article  CAS  Google Scholar 

  22. Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306:2090–3.

    Article  CAS  Google Scholar 

  23. Liuzzi JP, Lichten LA, Rivera S, et al. Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc Natl Acad Sci U S A. 2005;102:6843–8.

    Article  CAS  Google Scholar 

  24. Weiler HA, Jean-Philippe S, Cohen TR, Vanstone CA, Agellon S. Depleted iron stores and iron deficiency anemia associated with reduced ferritin and hepcidin and elevated soluble transferrin receptors in a multiethnic group of preschool-age children. Appl Physiol Nutr Metab. 2015;40:887–94.

    Article  CAS  Google Scholar 

  25. Ishibashi T, Kimura H, Uchida T, Kariyone S, Friese P, Burstein SA. Human interleukin 6 is a direct promoter of maturation of megakaryocytes in vitro. Proc Natl Acad Sci U S A. 1989;86:5953–7.

    Article  CAS  Google Scholar 

  26. Hashizume M, Hayakawa N, Mihara M. IL-6 transsignaling directly induces RANKL on fibroblast-like synovial cells and is involved in RANKL induction by TNF-a and IL-17. Rheumatology (Oxford). 2008;47:1635–40.

    Article  CAS  Google Scholar 

  27. Nakahara H, Song J, Sugimoto M, et al. Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis. Arthritis Rheum. 2003;48:1521–9.

    Article  CAS  Google Scholar 

  28. Grossman RM, Krueger J, Yourish D, et al. Interleukin 6 is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proc Natl Acad Sci U S A. 1989;86:6367–71.

    Article  CAS  Google Scholar 

  29. Gillespie EF, Raychaudhuri N, Papageorgiou KI, et al. Interleukin-6 production in CD40-engaged fibrocytes in thyroid-associated ophthalmopathy: involvement of Akt and NF-κB. Invest Ophthalmol Vis Sci. 2012;53:7746–53.

    Article  Google Scholar 

  30. Diehl SA, Schmidlin H, Nagasawa M, Blom B, Spits H. IL-6 triggers IL-21 production by human CD4+ T cells to drive STAT3-dependent plasma cell differentiation in B cells. Immunol Cell Biol. 2012;90:802–11.

    Article  CAS  Google Scholar 

  31. Diehl S, Anguita J, Hoffmeyer A, Zapton T, Ihle JN, Fikrig E, Rincón M. Inhibition of Th1 differentiation by IL-6 is mediated by SOCS1. Immunity. 2000;13:805–15.

    Article  CAS  Google Scholar 

  32. Diehl S, Rincón M. The two faces of IL-6 on Th1/Th2 differentiation. Mol Immunol. 2002;39:531–6.

    Article  CAS  Google Scholar 

  33. Miossec P, Korn T, Kuchroo VK. Interleukin-17 and type 17 helper T cells. N Engl J Med. 2009;361:888–98.

    Article  CAS  Google Scholar 

  34. Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance. Eur J Immunol. 2010;40:1830–5.

    Article  CAS  Google Scholar 

  35. Tanaka T. Can IL-6 blockade rectify imbalance between Tregs and Th17 cells? Immunotherapy. 2013;5:695–7.

    Article  CAS  Google Scholar 

  36. Carbone A, Gloghini A. Emerging issues after the recognition of in situ follicular lymphoma. Leuk Lymphoma. 2014;55:482–90.

    Article  Google Scholar 

  37. Okada M, Kitahara M, Kishimoto S, Matsuda T, Hirano T, Kishimoto T. IL-6/BSF-2 functions as a killer helper factor in the in vitro induction of cytotoxic T cells. J Immunol. 1988;141:1543–9.

    CAS  PubMed  Google Scholar 

  38. Ho LJ, Luo SF, Lai JH. Biological effects of interleukin-6: clinical applications in autoimmune diseases and cancers. Biochem Pharmacol. 2015;97:16–26.

    Article  CAS  Google Scholar 

  39. Hirano T, Matsuda T, Turner M, et al. Excessive production of interleukin 6/B cell stimulatory factor-2 in rheumatoid arthritis. Eur J Immunol. 1988;18:1797–801.

    Article  CAS  Google Scholar 

  40. Yoshizaki K, Matsuda T, Nishimoto N, et al. Pathogenic significance of interleukin-6 (IL-6/BSF-2) in Castleman’s disease. Blood. 1989;74:1360–7.

    CAS  PubMed  Google Scholar 

  41. Zhang XG, Chaptal PA, Klein B. Constitutive production of interleukin-6 and immunologic features in cardiac myxomas. Arthritis Rheum. 1990;33:398–402.

    Article  Google Scholar 

  42. Kishimoto T. Interleukin-6: from basic science to medicine – 40 years in immunology. Annu Rev Immunol. 2005;23:1–21.

    Article  CAS  Google Scholar 

  43. Mitchel EL, Jones G. Subcutaneous tocilizumab for the treatment of rheumatoid arthritis. Expert Rev Clin Immunol. 2016;12:103–14.

    Article  Google Scholar 

  44. Burmester GR, Rubbert-Roth A, Cantagrel A, et al. Efficacy and safety of subcutaneous tocilizumab versus intravenous tocilizumab in combination with traditional DMARDs in patients with RA at week 97 (SUMMACTA). Ann Rheum Dis. 2016;75:68–74.

    Article  CAS  Google Scholar 

  45. Curtis JR, Perez-Gutthann S, Suissa S, Napalkov P, Singh N, Thompson L, Porter-Brown B, Actemra Pharmacoepidemiology Board. Tocilizumab in rheumatoid arthritis: a case study of safety evaluations of a large postmarketing data set from multiple data sources. Semin Arthritis Rheum. 2015;44:381–8.

    Article  CAS  Google Scholar 

  46. Yokota S, Itoh Y, Morio T, et al. Tocilizumab in systemic juvenile idiopathic arthritis in a real-world clinical setting: results from 1 year of postmarketing surveillance follow-up of 417 patients in Japan. Ann Rheum Dis. 2016;75(9):1654–60.

    Article  CAS  Google Scholar 

  47. Campbell L, Chen C, Bhagat SS, Parker RA, Östör AJ. Risk of adverse events including serious infections in rheumatoid arthritis patients treated with tocilizumab: a systematic literature review and meta-analysis of randomized controlled trials. Rheumatology (Oxford). 2011;50:552–62.

    Article  CAS  Google Scholar 

  48. Nishimoto N, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T, Azuma J. Long-term safety and efficacy of tocilizumab, an anti-IL-6 receptor monoclonal antibody, in monotherapy, in patients with rheumatoid arthritis (the STREAM study): evidence of safety and efficacy in a 5-year extension study. Ann Rheum Dis. 2009;68:1580–4.

    Article  CAS  Google Scholar 

  49. Pfeil J, Grulich-Henn J, Wenning D, Breil T, Günther P, Lutz T. Multiple upper gastrointestinal perforations in a 15-year-old patient treated with tocilizumab. Rheumatology (Oxford). 2014;53:1713–4.

    Article  CAS  Google Scholar 

  50. Nakamura I, Omata Y, Naito M, Ito K. Blockade of interleukin 6 signaling induces marked neutropenia in patients with rheumatoid arthritis. J Rheumatol. 2009;36:459–60.

    Article  Google Scholar 

  51. Wright HL, Moots RJ, Edwards SW. The multifactorial role of neutrophils in rheumatoid arthritis. Nat Rev Rheumatol. 2014;10:593–601.

    Article  CAS  Google Scholar 

  52. Smolen JS, Weinblatt ME, Sheng S, Zhuang Y, Hsu B. Sirukumab, a human anti-interleukin-6 monoclonal antibody: a randomised, 2-part (proof-of-concept and dose-finding), phase II study in patients with active rheumatoid arthritis despite methotrexate therapy. Ann Rheum Dis. 2014;73:1616–25.

    Article  CAS  Google Scholar 

  53. Chen R, Chen B. Siltuximab (CNTO 328): a promising option for human malignancies. Drug Des Devel Ther. 2015;9:3455–8.

    Article  CAS  Google Scholar 

  54. Shaw S, Bourne T, Meier C, et al. Discovery and characterization of olokizumab: a humanized antibody targeting interleukin-6 and neutralizing gp130-signaling. MAbs. 2014;6:774–82.

    Article  Google Scholar 

  55. Genovese MC, Fleischmann D, Furst N, et al. Efficacy and safety of olokizumab in patients with rheumatoid arthritis with an inadequate response to TNF inhibitor therapy: outcomes of a randomised phase IIb study. Ann Rheum Dis. 2014;73:1607–15.

    Article  CAS  Google Scholar 

  56. Shakib S, Francis B, Smith J. Safety, pharmacokinetics and pharmacodynamics of ALD518 (BMS-945429), a high-affinity monoclonal antibody directed against interleukin-6 administered by subcutaneous injection: a phase I trial. Arthritis Rheum. 2010;62(Suppl 10):1124.

    Google Scholar 

  57. Weinblatt ME, Mease P, Mysler E, et al. The efficacy and safety of subcutaneous clazakizumab in patients with moderate-to-severe rheumatoid arthritis and an inadequate response to methotrexate: results from a multinational, phase IIb, randomized, double-blind, placebo/active-controlled, dose-ranging study. Arthritis Rheumatol. 2015;67:2591–600.

    Article  Google Scholar 

  58. Schmidt M, Matsumoto Y, Tisdale A, Lowden P, Kovalchin J, Wu P, Golden K, Dombrowski C, Lain B, Furfine ES. Optimised intravitreal IL-6 antagonist for the treatment of diabetic macular edema. The association for research in vision and ophthalmology (ARVO) annual meeting 2015 abstract.

    Google Scholar 

  59. Kim GW, Lee NR, Pi RH, Lim YS, Lee YM, Lee JM, Jeong HS, Chung SH. IL-6 inhibitors for treatment of rheumatoid arthritis: past, present, and future. Arch Pharm Res. 2015;38(5):575–84.

    Article  CAS  Google Scholar 

  60. Genovese MC, Fleischmann R, Kivitz AJ, et al. Sarilumab plus methotrexate in patients with active rheumatoid arthritis and inadequate response to methotrexate: results of a phase III study. Arthritis Rheumatol. 2015;67:1424–37.

    Article  CAS  Google Scholar 

  61. Van Roy M, Ververken C, Beirnaert E, et al. The preclinical pharmacology of the high affinity anti-IL-6R Nanobody® ALX-0061 supports its clinical development in rheumatoid arthritis. Arthritis Res Ther. 2015;17:135.

    Article  Google Scholar 

  62. Curnow SJ, Falciani F, Durrani OM, Cheung CM, Ross EJ, Wloka K, Rauz S, Wallace GR, Salmon M, Murray PI. Multiplex bead immunoassay analysis of aqueous humor reveals distinct cytokine profiles in uveitis. Invest Ophthalmol Vis Sci. 2005;46:4251–9.

    Article  Google Scholar 

  63. Horai R, Caspi RR. Cytokines in autoimmune uveitis. J Interferon Cytokine Res. 2011;31:733–44.

    Article  CAS  Google Scholar 

  64. Caspi RR, Roberge FG, McAllister CG, el-Saied M, Kuwabara T, Gery I, Hanna E, Nussenblatt RB. T cell lines mediating experimental autoimmune uveoretinitis (EAU) in the rat. J Immunol. 1986;136:928–33.

    CAS  PubMed  Google Scholar 

  65. Amadi-Obi A, Yu CR, Liu X, Mahdi RM, Clarke GL, Nussenblatt RB, Gery I, Lee YS, Egwuagu CE. TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1. Nat Med. 2007;13:711–8.

    Article  CAS  Google Scholar 

  66. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441(7090):235–8.

    Article  CAS  Google Scholar 

  67. Hohki S, Ohguro N, Haruta H, et al. Blockade of interleukin-6 signaling suppresses experimental autoimmune uveoretinitis by the inhibition of inflammatory Th17 responses. Exp Eye Res. 2010;91:162–70.

    Article  CAS  Google Scholar 

  68. Haruta H, Ohguro N, Fujimoto M, et al. Blockade of interleukin-6 signaling suppresses not only th17 but also interphotoreceptor retinoid binding protein-specific Th1 by promoting regulatory T cells in experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci. 2011;52:3264–71.

    Article  CAS  Google Scholar 

  69. Muselier A, Bielefeld P, Bidot S, Vinit J, Besancenot JF, Bron A. Efficacy of tocilizumab in two patients with anti-TNF-alpha refractory uveitis. Ocul Immunol Inflamm. 2011;19:382–3.

    Article  CAS  Google Scholar 

  70. Hirano T, Ohguro N, Hohki S, Hagihara K, Shima Y, Narazaki M, Ogata A, Yoshizaki K, Kumanogoh A, Kishimoto T, Tanaka T. A case of Behçet’s disease treated with a humanized anti-interleukin-6 receptor antibody, tocilizumab. Mod Rheumatol. 2012;22:298–302.

    Article  Google Scholar 

  71. Oshitari T, Kajita F, Tobe A, Itami M, Yotsukura J, Baba T, Yamamoto S. Refractory uveitis in patient with castleman disease successfully treated with tocilizumab. Case Rep Ophthalmol Med. 2012;2012:968180.

    PubMed  PubMed Central  Google Scholar 

  72. Shibuya M, Fujio K, Morita K, Harada H, Kanda H, Yamamoto K. Successful treatment with tocilizumab in a case of Cogan’s syndrome complicated with aortitis. Mod Rheumatol. 2013;23:577–81.

    Article  Google Scholar 

  73. Calvo-Río V, de la Hera D, Beltrán-Catalán E, Blanco R, Hernandez M, Martínez-Costa L, Loricera J, Cañal J, Ventosa J, Ortiz-Sanjuán F, Pina T, González-Vela MC, Rodríguez-Cundín P, González-Gay MA. Tocilizumab in uveitis refractory to other biologic drugs: a study of 3 cases and a literature review. Clin Exp Rheumatol. 2014;32:S54–7.

    PubMed  Google Scholar 

  74. Adán A, Llorenç V, Mesquida M, Pelegrín L. Tocilizumab treatment for recalcitrant uveitic macular edema. Graefes Arch Clin Exp Ophthalmol. 2013;251:2249–50.

    Article  Google Scholar 

  75. Adán A, Mesquida M, Llorenç V, Espinosa G, Molins B, Hernández MV, Pelegrín L. Tocilizumab treatment for refractory uveitis-related cystoid macular edema. Graefes Arch Clin Exp Ophthalmol. 2013;251:2627–32.

    Article  Google Scholar 

  76. Adán A, Mesquida M, Llorenç V, Modesto C. Tocilizumab for retinal vasoproliferative tumor secondary to juvenile idiopathic arthritis-associated uveitis: a case report. Graefes Arch Clin Exp Ophthalmol. 2014;252:163–4.

    Article  Google Scholar 

  77. Mesquida M, Molins B, Llorenç V, Sainz de la Maza M, Adán A. Long-term effects of tocilizumab therapy for refractory uveitis-related macular edema. Ophthalmology. 2014;121:2380–6.

    Article  Google Scholar 

  78. Mesquida M, Leszczynska A, Llorenç V, Adán A. Interleukin-6 blockade in ocular inflammatory diseases. Clin Exp Immunol. 2014;176:301–9.

    Article  CAS  Google Scholar 

  79. Mesquida M, Llorenç V, Adán A. In response to “Deuter CM, Zierhut M, Igney-Oertel A, Xenitidis T, Feidt A, Sobolewska B, Stuebiger N, Doycheva D. Tocilizumab in uveitic macular edema refractory to previous immunomodulatory treatment”. Ocul Immunol Inflamm. 2017;25:215–20.

    Article  Google Scholar 

  80. Deuter CM, Zierhut M, Igney-Oertel A, Xenitidis T, Feidt A, Sobolewska B, Stuebiger N, Doycheva D. Tocilizumab in uveitic macular edema refractory to previous immunomodulatory treatment. Ocul Immunol Inflamm. 2017;25:215–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Mesquida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mesquida, M., Llorenç, V., Adán, A. (2019). Targeting Interleukin-6 in Ocular Inflammatory Diseases. In: Lin, P., Suhler, E. (eds) Treatment of Non-infectious Uveitis. Springer, Cham. https://doi.org/10.1007/978-3-030-22827-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22827-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22825-5

  • Online ISBN: 978-3-030-22827-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics