Skip to main content

Data-Based Approximate Policy Iteration for Optimal Course-Keeping Control of Marine Surface Vessels

  • Conference paper
  • First Online:
Advances in Neural Networks – ISNN 2019 (ISNN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11555))

Included in the following conference series:

  • 1887 Accesses

Abstract

In this paper, the data-based approximate policy iteration (API) method is used for optimal course-keeping control with unknown ship model. When we deal with the nonlinear optimal control problem, the Hamilton Jacobi Bellman (HJB) equation, which is difficult to be solved analytically, needs to be tackled. Furthermore, because of numerous parameters to be determined and unknown nonlinear terms, it is usually difficult to establish the accurate mathematical model for ships. In order to overcome these difficulties, the API method, which can solve the problem of model-free system, is introduced for optimal course-keeping control of marine surface vessels. And the asymptotic stability of the closed-loop system can be guaranteed via Lyapunov analysis. Finally, a numerical example is provided to demonstrate the effectiveness of the control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, Z., Zhuo, Y., Li, T.: Optimal tracking control of the ship course system with partially-unknown dynamics. In: 4th International Conference on Information, Cybernetics and Computational Social Systems (ICCSS), pp. 631–635. IEEE (2017)

    Google Scholar 

  2. Du, J., Guo, C., Yu, S., Zhang, X.: Adaptive autopilot design of time-varying uncertain ships with completely unknown control coefficient. IEEE J. Ocean. Eng. 32(2), 346–352 (2007)

    Google Scholar 

  3. Wang, Y., Li, T., Philip Chen, C.L.: Adaptive terminal sliding mode control for formations of underactuated vessels. In: Sun, F., Liu, H., Hu, D. (eds.) ICCSIP 2016. CCIS, vol. 710, pp. 27–35. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-5230-9_3

    Google Scholar 

  4. Chen, M., Ge, S.S., How, B.V.E., Choo, Y.S.: Robust adaptive position mooring control for marine vessels. IEEE Trans. Control Syst. Technol. 21(2), 395–409 (2017)

    Google Scholar 

  5. Wang, N., Er, M.J.: Direct adaptive fuzzy tracking control of marine vehicles with fully unknown parametric dynamics and uncertainties. IEEE Trans. Control Syst. Technol. 24(5), 1845–1852 (2016)

    Google Scholar 

  6. Liu, S., Fang, L., Ge, Y.-M., Fu, H.-X.: GA-PID adaptive control research for ship course-keeping system. J. Syst. Simul. 19(16), 3783–3786 (2007)

    Google Scholar 

  7. Zhang, K., Li, T., Li, Z., Philip Chen, C.L.: Neural network based dynamic surface second order sliding mode control for AUVs. In: Sun, F., Liu, H., Hu, D. (eds.) ICCSIP 2016. CCIS, vol. 710, pp. 417–424. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-5230-9_41

    Google Scholar 

  8. Liu, C., Li, T., Chen, C.L.P.: Leader-following consensus control for multiple marine vessels based on dynamic surface control and neural network. In: 4th International Conference on Information, Cybernetics and Computational Social Systems (ICCSS), pp. 160–165. IEEE (2017)

    Google Scholar 

  9. Lewis, F.L., Vrabie, D., Syrmos, V.L.: Optimal Control. Wiley, Hoboken (2012)

    Google Scholar 

  10. Peng, Z., Wang, J., Wang, D.: Distributed maneuvering of autonomous surface vehicles based on neurodynamic optimization and fuzzy approximation. IEEE Trans. Control Syst. Technol. 26(3), 1083–1090 (2018)

    Google Scholar 

  11. Ejaz, M., Chen, M.: Optimal backstepping control for a ship using firefly optimization algorithm and disturbance observer. Trans. Inst. Meas. Control 40(6), 1983–1998 (2018)

    Google Scholar 

  12. Zhang, J., Sun, T., Liu, Z.: Robust model predictive control for path-following of underactuated surface vessels with roll constraints. Ocean Eng. 143, 125–132 (2017)

    Google Scholar 

  13. Khaled, N., Chalhoub, N.G.: A dynamic model and a robust controller for a fully-actuated marine surface vessel. J. Vib. Control 17(6), 801–812 (2011)

    Google Scholar 

  14. Yu, R., Zhu, Q., Xia, G., Liu, Z.: Sliding mode tracking control of an underactuated surface vessel. IET Control Theory Appl. 6(3), 461–466 (2012)

    Google Scholar 

  15. Zhang, Y., Li, S., Liu, X.: Adaptive near-optimal control of uncertain systems with application to underactuated surface vessels. IEEE Trans. Control Syst. Technol. 26(4), 1204–1218 (2018)

    Google Scholar 

  16. Zhang, H., Zhang, X., Luo, Y., Yang, J.: An overview of research on adaptive dynamic programming. Acta Automatica Sin. 39(4), 303–311 (2013)

    Google Scholar 

  17. Murray, J.J., Cox, C.J., Lendaris, G.G., Saeks, R.: Adaptive dynamic programming. IEEE Trans. Syst. Man Cybern. Part C-Appl. Rev. 32(2), 140–153 (2002)

    Google Scholar 

  18. Liu, D., Wei, Q.: Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 25(3), 621–634 (2014)

    Google Scholar 

  19. Sun, H., Hou, Z.: A data-driven adaptive iterative learning predictive control for a class of discrete-time nonlinear systems. In: Proceedings of the 29th Chinese Control Conference (CCC), pp. 5871–5876. IEEE (2010)

    Google Scholar 

  20. Luo, B., Wu, H., Huang, T., Liu, D.: Data-based approximate policy iteration for affine nonlinear continuous-time optimal control design. Automatica 50(12), 3281–3290 (2014)

    Google Scholar 

  21. Beard, R.W., Saridis, G.N., Wen, J.T.: Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation. Automatica 33(12), 2159–2177 (1997)

    Google Scholar 

  22. Peng, Z., Wang, J.: Output-feedback path-following control of autonomous underwater vehicles based on an extended state observer and projection neural networks. IEEE Trans. Syst. Man Cybern. Syst. 48(4), 535–544 (2018)

    Google Scholar 

  23. Wang, D., Mu, C., Liu, D.: Data-driven nonlinear near-optimal regulation based on iterative neural dynamic programming. Acta Automatica Sin. 43(3), 366–375 (2017)

    Google Scholar 

  24. Fossen, T.I.: Guidance and Control of Ocean Vehicles. Wiley, New York (1994)

    Google Scholar 

  25. Abkowitz, M.A.: Lectures on Ship Hydrodynamics–Steering and Manoeuvrability (1964)

    Google Scholar 

  26. Kensaku, N., Kenshi, T., Keinosuke, H., Susumu, H.: On the steering qualities of ships. Int. Shipbuilding Prog. 4(35), 354–370 (1957)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 61751202, 61751205, 61572540, 61803064); the Natural Science Foundation of Liaoning Province (20180550082, 20170540093); the Science & Technology Innovation Founds of Dalian (2018J11Y022); the Fundamental Research Funds for the Central Universities (3132018306); and the Fundamental Research Funds of Dalian Maritime University (3132018157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bai, Y., Liu, Y., Shan, Q., Li, T., Lu, Y. (2019). Data-Based Approximate Policy Iteration for Optimal Course-Keeping Control of Marine Surface Vessels. In: Lu, H., Tang, H., Wang, Z. (eds) Advances in Neural Networks – ISNN 2019. ISNN 2019. Lecture Notes in Computer Science(), vol 11555. Springer, Cham. https://doi.org/10.1007/978-3-030-22808-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22808-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22807-1

  • Online ISBN: 978-3-030-22808-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics