A New Diffusion Kalman Algorithm Dealing with Missing Data

  • Shuangyi XiaoEmail author
  • Nankun Mu
  • Feng Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11555)


In this paper, we propose a novel modified distributed Kalman algorithm, which is a diffusion strategy that the state estimation is more precise while the system model is time-varying. Our focus is on the missing data gathered by a set of sensor nodes that may obtain incomplete information because of the harsh environment. Simulation results evaluate the performance of the proposed distributed Kalman filtering algorithm.


Diffusion estimation Kalman filtering Missing data 


  1. 1.
    Cattivelli, F.S., Sayed, A.H.: Diffusion LMS strategies for distributed estimation. IEEE Trans. Sign. Process. 58(3), 1035–1048 (2010)Google Scholar
  2. 2.
    Bhuiyan, M.Z., Wang, G., Vasilakos, A.V.: Local area prediction-based mobile target tracking in wireless sensor networks. IEEE Trans. Comput. 64(7), 1968–1982 (2015)Google Scholar
  3. 3.
    Huo, Y., Cai, Z., Gong, W., Liu, Q.: A new adaptive Kalman filter by combining evolutionary algorithm and fuzzy inference system. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 2893–2900 (2014)Google Scholar
  4. 4.
    Balazinska, M., et al.: Data management in the worldwide sensor web. IEEE Pervasive Comput. 6(2), 30–40 (2007)Google Scholar
  5. 5.
    Cattivelli, F.S., Lopes, C.G., Sayed, A.H.: Diffusion strategies for distributed Kalman filtering: formulation and performance analysis. In: Proceedings Cognitive Information Processing. Santorini, Greece (2008)Google Scholar
  6. 6.
    Spanos, D.P., Olfati-Saber, R., Murray, R.M.: Approximate distributed Kalman filtering in sensor networks with quantifiable performance. In: IPSN, pp. 133–139. Los Angeles, CA (2005)Google Scholar
  7. 7.
    Kulakov, A., Davcev, D.: Tracking of unusual events in wireless sensor networks based on artificial neural-networks algorithms. Inf. Technol. Coding Comput. (ITCC) 2, 534–539 (2005)Google Scholar
  8. 8.
    Estrin, D., Girod, L., Pottie, G., Srivastava, M.: Instrumenting the world with wireless sensor networks. In: ICASSP, vol. 4, pp. 2033–2036. Salt Lake City (2001)Google Scholar
  9. 9.
    Candes, E., Tao, T.: Near optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inf. Theor. 52(12), 5406–5425 (2006)Google Scholar
  10. 10.
    Cattivelli, F.S., Sayed, A.H.: Diffusion mechanisms for fixedpoint distributed Kalman smoothing. In: European Signal Processing Conference. Lausanne, Switzerland (2008)Google Scholar
  11. 11.
    Cattivelli, F.S., Sayed, A.H.: Diffusion strategies for distributed Kalman filtering and smoothing. IEEE Trans. Autom. Control 55(9), 2069–2084 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Electronic and Information EngineeringSouthwest UniversityChongqingPeople’s Republic of China

Personalised recommendations