Skip to main content

Artificial Neural Network Surrogate Modeling of Oil Reservoir: A Case Study

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11555))

Abstract

We develop a data-driven model, introducing recent advances in machine learning to reservoir simulation. We use a conventional reservoir modeling tool to generate training set and a special ensemble of artificial neural networks (ANNs) to build a predictive model. The ANN-based model allows to reproduce the time dependence of fluids and pressure distribution within the computational cells of the reservoir model. We compare the performance of the ANN-based model with conventional reservoir modeling and illustrate that ANN-based model (1) is able to capture all the output parameters of the conventional model with very high accuracy and (2) demonstrate much higher computational performance. We finally elaborate on further options for research and developments within the area of reservoir modeling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Computer modelling group ltd. https://www.cmgl.ca/software

  2. Eclipse reservoir simulator. https://www.software.slb.com

  3. TNavigator - rock flow dynamics. http://rfdyn.com/tnavigator/

  4. Alestra, S., et al.: Surrogate models for spacecraft aerodynamic problems. In: Proceedings of WCCM - ECCM - ECFD 2014 Congress, Barcelona, Spain, 20–25 July 2014

    Google Scholar 

  5. Belyaev, M., Burnaev, E.: Approximation of a multidimensional dependency based on a linear expansion in a dictionary of parametric functions. Inform. Appl. 7(3), 114–125 (2013)

    Google Scholar 

  6. Belyaev, M., et al.: Building data fusion surrogate models for spacecraft aerodynamic problems with incomplete factorial design of experiments. Adv. Mater. Res. 1016, 405–412 (2014)

    Google Scholar 

  7. Belyaev, M., et al.: Gtapprox: surrogate modeling for industrial design. Adv. Eng. Softw. 102, 29–39 (2016)

    Google Scholar 

  8. Burnaev, E., Erofeev, P.: The influence of parameter initialization on the training time and accuracy of a nonlinear regression model. J. Comm. Tech. and Electr. 61(6), 646–660 (2016)

    Google Scholar 

  9. Burnaev, E., Panov, M.: Adaptive design of experiments based on gaussian processes. In: Gammerman, A., Vovk, V., Papadopoulos, H. (eds.) SLDS 2015. LNCS (LNAI), vol. 9047, pp. 116–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17091-6_7

    Google Scholar 

  10. Burnaev, E., Prikhodko, P.: On a method for constructing ensembles of regression models. Autom. Remote Control 74(10), 1630–1644 (2013)

    Google Scholar 

  11. Chavent, G., Jaffré, J.: Mathematical Models and Finite Elements for Reservoir Simulation: Single Phase, Multiphase and Multicomponent Flows Through Porous Media, vol. 17. Elsevier, Amsterdam (1986)

    Google Scholar 

  12. Grihon, S., Burnaev, E., Belyaev, M., Prikhodko, P.: Surrogate modeling of stability constraints for optimization of composite structures. In: Koziel, S., Leifsson, L. (eds.) Surrogate-Based Modeling and Optimization, pp. 359–391. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7551-4_15

    Google Scholar 

  13. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS, 2nd edn. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Google Scholar 

  14. Kalantari-Dahaghi, A., Mohaghegh, S., Esmaili, S.: Coupling numerical simulation and machine learning to model shale gas production at different time resolutions. J. Nat. Gas Sci. Eng. 25, 380–392 (2015)

    Google Scholar 

  15. Klyuchnikov, N., et al.: Data-driven model for the identification of the rock type at a drilling bit. J. Petrol. Sci. Eng. (2019)

    Google Scholar 

  16. Lasdon, L., Shirzadi, S., Ziegel, E.: Implementing crm models for improved oil recovery in large oil fields. Opt. Engin. 18(1), 87–103 (2017)

    Google Scholar 

  17. Makhotin, I., Burnaev, E., Koroteev, D.: Gradient boosting to boost the efficiency of hydraulic fracturing. J. Petrol. Explor. Prod. Tech. (2019)

    Google Scholar 

  18. Mohaghegh, S., Popa, A., Ameri, S.: Design optimum frac jobs using virtual intelligence techniques. Comput. Geosci. 26(8), 927–939 (2000)

    Google Scholar 

  19. Mohaghegh, S.D.: Converting detail reservoir simulation models into effective reservoir management tools using SRMs; case study-three green fields in saudi arabia. Int. J. Oil Gas Coal Technol. 7(2), 115–131 (2014)

    Google Scholar 

  20. Mohaghegh, S.D., Amini, S., Gholami, V., Gaskari, R., Bromhal, G.S., et al.: Grid-based surrogate reservoir modeling (SRM) for fast track analysis of numerical reservoir simulation models at the gridblock level. In: SPE Western Regional Meeting. Society of Petroleum Engineers (2012)

    Google Scholar 

  21. Nguyen, A.P.: Capacitance resistance modeling for primary recovery, waterflood and water-CO flood. Ph.D. thesis (2012)

    Google Scholar 

  22. Notchenko, A., Kapushev, Y., Burnaev, E.: Large-scale shape retrieval with sparse 3D convolutional neural networks. In: van der Aalst, W.M.P., Ignatov, D.I., Khachay, M., Kuznetsov, S.O., Lempitsky, V., Lomazova, I.A., Loukachevitch, N., Napoli, A., Panchenko, A., Pardalos, P.M., Savchenko, A.V., Wasserman, S. (eds.) AIST 2017. LNCS, vol. 10716, pp. 245–254. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73013-4_23

    Google Scholar 

  23. Burnaev, E., Panin, I.: Adaptive design of experiments for sobol indices estimation based on quadratic metamodel. In: Gammerman, A., Vovk, V., Papadopoulos, H. (eds.) SLDS 2015. LNCS (LNAI), vol. 9047, pp. 86–95. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17091-6_4

    Google Scholar 

  24. Burnaev, E., Panin, I., Sudret, B.: Effective design for sobol indices estimation based on polynomial chaos expansions. In: Gammerman, A., Luo, Z., Vega, J., Vovk, V. (eds.) COPA 2016. LNCS (LNAI), vol. 9653, pp. 165–184. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33395-3_12

    Google Scholar 

  25. Panin, I., Sudret, B., Burnaev, E.: Efficient design of experiments for sensitivity analysis based on polynomial chaos expansions. Ann. Math. Artif. Intell. 81(1–2), 187–207 (2017)

    Google Scholar 

  26. Pyrcz, M.J., Deutsch, C.V.: Geostatistical Reservoir Modeling. Oxford University Press, Oxford (2014)

    Google Scholar 

  27. Sterling, G., Prikhodko, P., Burnaev, E., Belyaev, M., Grihon, S.: On approximation of reserve factors dependency on loads for composite stiffened panels. Adv. Mater. Res. 1016, 85–89 (2014)

    Google Scholar 

  28. Sudakov, O., Burnaev, E., Koroteev, D.: Driving digital rock towards machine learning: predicting permeability with gradient boosting and deep neural networks. Comput. Geosci. 127, 91–98 (2019)

    Google Scholar 

  29. Temirchev, P., et al.: Deep neural networks predicting oil movement in a development unit. J. Petrol Sci. Eng. (2019)

    Google Scholar 

  30. Tyson, S.: An Introduction to Reservoir Modelling. Piper’s Ash Limited, United Kingdom (2007)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation under Grant 19-41-04109.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Burnaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sudakov, O., Koroteev, D., Belozerov, B., Burnaev, E. (2019). Artificial Neural Network Surrogate Modeling of Oil Reservoir: A Case Study. In: Lu, H., Tang, H., Wang, Z. (eds) Advances in Neural Networks – ISNN 2019. ISNN 2019. Lecture Notes in Computer Science(), vol 11555. Springer, Cham. https://doi.org/10.1007/978-3-030-22808-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22808-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22807-1

  • Online ISBN: 978-3-030-22808-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics