Advertisement

Intelligent and Distributed Data Warehouse for Student’s Academic Performance Analysis

  • Jesús SilvaEmail author
  • Lissette Hernández
  • Noel Varela
  • Omar Bonerge Pineda Lezama
  • Jorge Tafur Cabrera
  • Bellanith Ruth Lucena León Castro
  • Osman Redondo Bilbao
  • Leidy Pérez Coronel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11555)

Abstract

In the academic world, a large amount of data is handled each day, ranging from student’s assessments to their socio-economic data. In order to analyze this historical information, an interesting alternative is to implement a Data Warehouse. However, Data Warehouses are not able to perform predictive analysis by themselves, so machine intelligence techniques can be used for sorting, grouping, and predicting based on historical information to improve the analysis quality. This work describes a Data Warehouse architecture to carry out an academic performance analysis of students.

Keywords

Intelligent data retrieval Data Warehouse Unique Identification Number Academic performance 

References

  1. 1.
    Vasquez, C., Torres, M., Viloria, A.: Public policies in science and technology in Latin American countries with universities in the top 100 of web ranking. J. Eng. Appl. Sci. 12(11), 2963–2965 (2017)Google Scholar
  2. 2.
    Aguado-López, E., Rogel-Salazar, R., Becerril-García, A., Baca-Zapata, G.: Presencia de universidades en la Red: La brecha digital entre Estados Unidos y el resto del mundo. Revista de Universidad y Sociedad del Conocimiento 6(1), 1–17 (2009)Google Scholar
  3. 3.
    Torres-Samuel, M., Vásquez, C., Viloria, A., Lis-Gutiérrez, J.P., Borrero, T.C., Varela, N.: Web visibility profiles of top100 Latin American universities. In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943, pp. 1–12. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93803-5_24Google Scholar
  4. 4.
    Viloria, A., Lis-Gutiérrez, J.P., Gaitán-Angulo, M., Godoy, A.R.M., Moreno, G.C., Kamatkar, S.J.: Methodology for the design of a student pattern recognition tool to facilitate the teaching – learning process through knowledge data discovery (big data). In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943, pp. 1–12. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93803-5_63Google Scholar
  5. 5.
    Caicedo, E.J.C., Guerrero, S., López, D.: Propuesta para la construcción de un índice socioeconómico para los estudiantes que presentan las pruebas Saber Pro. Comunicaciones en Estadística 9(1), 93–106 (2016)Google Scholar
  6. 6.
    Mazón, J.N., Trujillo, J., Serrano, M., Piattini, M.: Designing data warehouses: from business requirement analysis to multidimensional modeling. In Proceedings of the 1st International Workshop on Requirements Engineering for Business Need and IT Alignment, Paris, France (2005)Google Scholar
  7. 7.
    Vásquez, C., et al.: Cluster of the Latin American universities top100 according to webometrics 2017. In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943, pp. 1–12. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93803-5_26Google Scholar
  8. 8.
    Haykin, S.: Neural Networks a Comprehensive Foundation, 2nd edn. Macmillan College Publishing Inc., USA (1999). ISBN 9780023527616Google Scholar
  9. 9.
    Isasi, P., Galván, I.: Redes de Neuronas Artificiales. Un enfoque Práctico. Pearson, London (2004). ISBN 8420540250Google Scholar
  10. 10.
    Haykin, S.: Neural Networks and Learning Machines. Prentice Hall International, New Jersey (2009)Google Scholar
  11. 11.
    Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50(1), 159–175 (2003)Google Scholar
  12. 12.
    Kuan, C.M.: Artificial neural networks. In: Durlauf, S.N., Blume, L.E. (eds.) The New Palgrave Dictionary of Economics. Palgrave Macmillan, Basingstoke (2008)Google Scholar
  13. 13.
    Jain, A.K., Mao, J., Mohiuddin, K.M.: Artificial neural networks: a tutorial. IEEE Comput. 29(3), 1–32 (1996)Google Scholar
  14. 14.
    Sevim, C., Oztekin, A., Bali, O., Gumus, S., Guresen, E.: Developing an early warning system to predict currency crises. Eur. J. Oper. Res. 237(1), 1095–1104 (2014)Google Scholar
  15. 15.
    Sekmen, F., Kurkcu, M.: An early warning system for Turkey: the forecasting of economic crisis by using the artificial neural networks. Asian Econ. Finan. Rev. 4(1), 529–543 (2014)Google Scholar
  16. 16.
    Singhal, D., Swarup, K.S.: Electricity price forecasting using artificial neural networks. IJEPE 33(1), 550–555 (2011)Google Scholar
  17. 17.
    Mombeini, H., Yazdani-Chamzini, A.: Modelling gold price via artificial neural network. J. Econ. Bus. Manag. 3(7), 699–703 (2015)Google Scholar
  18. 18.
    Kulkarni, S., Haidar, I.: Forecasting model for crude oil price using artificial neural networks and commodity future prices. Int. J. Comput. Sci. Inf. Secur. 2(1), 81–89 (2009)Google Scholar
  19. 19.
    Bontempi, G., Ben Taieb, S., Le Borgne, Y.-A.: Machine learning strategies for time series forecasting. In: Aufaure, M.-A., Zimányi, E. (eds.) eBISS 2012. LNBIP, vol. 138, pp. 62–77. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36318-4_3Google Scholar
  20. 20.
    Duan, L., Xu, L., Liu, Y., Lee, J.: Cluster-based outlier detection. Ann. Oper. Res. 168(1), 151–168 (2009)Google Scholar
  21. 21.
    Abhay, K.A., Badal, N.A.: Novel approach for intelligent distribution of data warehouses. Egypt. Inf. J. 17(1), 147–159 (2015)Google Scholar
  22. 22.
    Savasere, A., Omiecinski, E., Navathe, S.: An efficient algorithm for data mining association rules in large databases. In: Proceedings of 21st Very Large Data Base Conference, vol. 5, no. 1, pp. 432–444 (1995)Google Scholar
  23. 23.
    Stolfo, S., Prodromidis, A.L., Tselepis, S., Lee, W., Fan, D.W.: Java agents for meta learning over distributed databases. In: Proceedings of 3rd International Conference on Knowledge Discovery and Data Mining, vol. 5, no. 2, pp. 74–81 (1997)Google Scholar
  24. 24.
    Prodromidis, A., Chan, P.K., Stolfo, S.J.: Meta learning in distributed data mining systems: issues and approaches. In: Kargupta, H., Chan, P. (eds.) Book on Advances in Distributed and Parallel Knowledge Discovery. AAAI/MIT Press, Cambridge (2000)Google Scholar
  25. 25.
    Parthasarathy, S., Zaki, M.J., Ogihara, M.: Parallel data mining for association rules on shared-memory systems. Knowl. Inf. Syst. Int. J. 3(1), 1–29 (2001)Google Scholar
  26. 26.
    Grossman, R.L., Bailey, S.M., Sivakumar, H., Turinsky, A.L.: Papyrus: a system for data mining over local and wide area clusters and super-clusters. In: Proceedings of ACM/IEEE Conference on Supercomputing, vol. 63, pp. 1–14 (1999)Google Scholar
  27. 27.
    Chattratichat, J., Darlington, J., Guo, Y., Hedvall, S., Köhler, M., Syed, J.: An architecture for distributed enterprise data mining. In: Sloot, P., Bubak, M., Hoekstra, A., Hertzberger, B. (eds.) HPCN-Europe 1999. LNCS, vol. 1593, pp. 573–582. Springer, Heidelberg (1999).  https://doi.org/10.1007/BFb0100618Google Scholar
  28. 28.
    Wang, L., Tao, J., Ranjan, R., Marten, H., Streit, A., Chen, J., Chen, D.: G-Hadoop: MapReduce across distributed data centers for data-intensive computing. Future Gener. Comput. Syst. 29(3), 739–750 (2013)Google Scholar
  29. 29.
    Butenhof, D.R.: Programming with POSIX Threads. Addison-Wesley Longman Publishing Company, Boston (1997)Google Scholar
  30. 30.
    Bhaduri, K., Wolf, R., Giannella, C., Kargupta, H.: Distributed decision-tree induction in peer-to-peer systems. Stat. Anal. Data Min. 1(2), 85–103 (2008)Google Scholar
  31. 31.
    Instituto colombiano para la Evaluación de la Educación - ICFES. Informe nacional de resultados Saber Pro 2015–2018. ICFES, Bogotá (2018)Google Scholar
  32. 32.
    Rafailidis, D., Kefalas, P., Manolopoulos, Y.: Preference dynamics with multimodal user-item interactions in social media recommendation. Expert Syst. Appl. 74(1), 11–18 (2017)Google Scholar
  33. 33.
    Zheng, C., Haihong, E., Song, M., Song, J.: CMPTF: contextual modeling probabilistic tensor factorization for recommender systems. Neurocomputing 205(1), 141–151 (2016)Google Scholar
  34. 34.
    Hidasi, B., Tikk, D.: Fast ALS-based tensor factorization for context-aware recommendation from implicit feedback. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS (LNAI), vol. 7524, pp. 67–82. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33486-3_5Google Scholar
  35. 35.
    Lee, J., Lee, D., Lee, Y.C., Hwang, W.S., Kim, S.W.: Improving the accuracy of top-n recommendation using a preference model. Inf. Sci. 348(1), 290–304 (2016)Google Scholar
  36. 36.
    Abhay, K.A., Neelendra, B.: Data storing in intelligent and distributed data warehouse using unique identification number. Int. J. Grid Distrib. Comput. 10(9), 13–32 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jesús Silva
    • 1
    Email author
  • Lissette Hernández
    • 2
  • Noel Varela
    • 2
  • Omar Bonerge Pineda Lezama
    • 3
  • Jorge Tafur Cabrera
    • 4
  • Bellanith Ruth Lucena León Castro
    • 4
  • Osman Redondo Bilbao
    • 4
  • Leidy Pérez Coronel
    • 4
  1. 1.Universidad Peruana de Ciencias AplicadasLimaPeru
  2. 2.Universidad de la CostaBarranquillaColombia
  3. 3.Universidad Tecnológica Centroamericana (UNITEC)San Pedro SulaHonduras
  4. 4.Corporación Universitaria LatinoamericanaBarranquillaColombia

Personalised recommendations