Approximation of Edwards-Anderson Spin-Glass Model Density of States

  • Magomed Y. Malsagov
  • Iakov M. KarandashevEmail author
  • Boris V. Kryzhanovsky
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11555)


We have investigated the density of states of the Edwards-Anderson model and derived an approximation formula which agrees well with the results of numerical experiments. It is important that the formula can well approximate not only the density of states, but also its first and second derivatives, which are most valuable for obtaining the critical parameters of the system. The evaluations can be further used for examining the behavior of 2D Ising models at different temperatures, particularly for tackling Bayesian inference problems and learning algorithms.


Edwards-Anderson model Spin glass Global state Density of states 


  1. 1.
    Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)Google Scholar
  2. 2.
    Onsager, L.: Crystal Statistics. I. A two-dimensional model with an order–disorder transition. Phys. Rev. 65, 117–149 (1944)Google Scholar
  3. 3.
    Edwards, S.F., Anderson, P.W.: Theory of spin glasses. J. Phys. F: Metal Phys. 5, 965–974 (1975)Google Scholar
  4. 4.
    Sherrington, D., Kirkpatrick, P.: Solvable model of a spin-glass. Phys. Rev. Lett. 35(26), 1792–1796 (1975)Google Scholar
  5. 5.
    Metropolis, N., Ulam, S.: The Monte Carlo Method. J. of Am. Stat. Assoc. 44(247), 335–341 (1949)Google Scholar
  6. 6.
    Fishman, G.S.: Monte Carlo: Concepts, Algorithms, and Applications. Springer Series in Operations Research and Financial Engineering, 1st edn. Springer, New York (1996). Scholar
  7. 7.
    Bielajew, A.F.: Fundamentals of the Monte Carlo method for neutral and charged particle transport. The University of Michigan, Dep. of Nuclear Engineering and Radiological Sciences (2001)Google Scholar
  8. 8.
    Foulkes, W.M.C., Mitas, L., Needs, R.J., Rajagopal, G.: Quantum Monte Carlo simulations of solids. Rev. Mod. Phys. 73(1), 33–83 (2001)Google Scholar
  9. 9.
    Binder, K.: Finite Size scaling analysis of Iising model block distribution functions. Z. Phys. B 43, 119–140 (1981)Google Scholar
  10. 10.
    Binder, K., Luijten, E.: Monte Carlo tests of renormalization-group predictions for critical phenomena in Ising models. Phys. Rep. 344, 179–253 (2001)Google Scholar
  11. 11.
    Kasteleyn, P.: Dimer statistics and phase transitions. J. Math. Phys. 4(2), 287–293 (1963)Google Scholar
  12. 12.
    Fisher, M.: On the dimer solution of planar Ising models. J. Math. Phys. 7(10), 1776–1781 (1966)Google Scholar
  13. 13.
    Karandashev, Ya.M., Malsagov, M.Yu.: Polynomial algorithm for exact calculation of partition function for binary spin model on planar graphs. Opt. Mem. Neural Networks (Inf. Opt.) 26(2), 87–95 (2017)Google Scholar
  14. 14.
    Schraudolph, N., Kamenetsky, D.: Efficient exact inference in planar Ising models. In: NIPS (2008).
  15. 15.
    Kryzhanovsky, B.V., Malsagov, M.Yu., Karandashev, I.M.: Investigation of finite-size 2D Ising model with a noisy matrix of spin-spin interactions. Entropy 20(8), 585 (2018)Google Scholar
  16. 16.
    Kryzhanovsky, B.V., Karandashev, I.M., Malsagov, M.Yu.: Dependence of critical temperature on dispersion of connections in 2D grid. In: Huang, T., Lv, J., Sun, C., Tuzikov, Alexander V. (eds.) ISNN 2018. LNCS, vol. 10878, pp. 695–702. Springer, Cham (2018). Scholar
  17. 17.
    Karandashev, I.M., Kryzhanovsky, B.V., Malsagov, M.Yu.: Spectral characteristics of a finite 2D Ising model. Opt. Mem. Neural Networks (Inf. Opt.) 27(3), 147–151 (2018)Google Scholar
  18. 18.
    Häggkvist, R., Rosengren, A., Andrén, D., Kundrotas, P., Lundow, P.H., Markström, K.: Computation of the Ising partition function for 2-dimensional square grids. Phys. Rev. E 69, 046104 (2004)Google Scholar
  19. 19.
    Beale, P.D.: Exact distribution of energies in the two-dimensional Ising model. Phys. Rev. Lett. 76, 78–81 (1996)Google Scholar
  20. 20.
    Litinskii, L., Kryzhanovsky, B.: Spectral density and calculation of free energy. Physica A: Stat. Mech. Appl. 510, 702–712 (2018)Google Scholar
  21. 21.
    Kryzhanovsky, B.V.: Features of the Spectral Density of a Spin System. Dokl. Math. 97(2), 188–192 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Magomed Y. Malsagov
    • 1
  • Iakov M. Karandashev
    • 1
    Email author
  • Boris V. Kryzhanovsky
    • 1
  1. 1.SRISA RAS, Center of Optical Neural TechnologiesMoscowRussia

Personalised recommendations