Skip to main content

Robust Adaptive Resonant Damping Control of Nanopositioning

  • Conference paper
  • First Online:
  • 1852 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11555))

Abstract

Hysteresis and vibration are main factors in reducing the accuracy and the speed of a nanopositioner. In order to improve the positioning accuracy and the speed, a robust adaptive resonant damping control is proposed for trajectory tracking of a nanopositioner system driven by a piezoelectric actuator. Radial basis function neural network is employed to approximate unknown nonlinearities in the controller so as to reduce the dependence on model information. Linear and hysteresis model are establish based on nanopositioning stage measured data. The proposed control strategy is verified by simulation using an identified model.

This work is supported by National Natural Science Foundation (NNSF) of China under Grant 61403006, 61873005; Key program of Beijing Municipal Education Commission KZ201810011012; and Support Project of High-level Teachers in Beijing Municipal Universities in the Period of 13th Five-year Plan CIT&TCD201704044.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tuma, T., Sebastian, A., Lygeros, J.: The four pillars of nanopositioning for scanning probe microscopy: the position sensor, the scanning device, the feedback controller, and the reference trajectory. IEEE Control Syst. Mag. 33(6), 68–85 (2013)

    Google Scholar 

  2. Li, Y., Xu, Q.: A totally decoupled piezo-driven XYZ flexure parallel micropositioning stage for micro/nan-manipulation. IEEE Trans. Autom. Sci. Eng. 8(2), 265–279 (2011)

    Google Scholar 

  3. Wang, F., Liang, C., Tian, Y.: A flexure-based kinematically decoupled micropositioning stage with a centimeter range dedicated to micro/nano manufacturing. IEEE/ASME Trans. Mechatron. 21(2), 1055–1062 (2016)

    Google Scholar 

  4. Devasia, S., Eleftheriou, E., Moheimani, S.O.: A survey of control issues in nanopositioning. IEEE Trans. Control Syst. Technol. 15(5), 802–823 (2007)

    Google Scholar 

  5. Gu, G.Y., Zhu, L.M., Su, C.Y.: Integral resonant damping for high-bandwidth control of piezoceramic stack actuators with asymmetric hysteresis nonlinearity. Mechatronics 24(4), 367–375 (2014)

    Google Scholar 

  6. Ge, P., Jouaneh, M.: Tracking control of a piezoceramic actuator. IEEE Trans. Control Syst. Technol. 4(3), 209–216 (1996)

    Google Scholar 

  7. Iyer, R.V., Tan, X.: Control of hysteretic systems through inverse compensation. IEEE Control Syst. 29(1), 83–99 (2009)

    Google Scholar 

  8. Jayawardhana, B., Logemann, H., Ryan, E.P.: PID control of second-order systems with hysteresis. Int. J. Control 81(8), 1331–1342 (2008)

    Google Scholar 

  9. Liu, W., Cheng, L., Hou, Z.G.: An inversion-free predictive controller for piezoelectric actuators based on a dynamic linearized neural network model. IEEE/ASME Trans. Mechatron. 21(1), 214–226 (2016)

    Google Scholar 

  10. Cheng, L., Liu, W., Yang, C.: A neural-network-based controller for piezoelectric-actuated stick-slip devices. IEEE Trans. Ind. Electron. 65(3), 2598–2607 (2018)

    Google Scholar 

  11. Clayton, G.M., Tien, S., Leang, K.K.: A review of feedforward control approaches in nanopositioning for high-speed SPM. J. Dyn. Syst. Meas. Control 131(6), 061101 (2009)

    Google Scholar 

  12. Lee, C., Salapaka, S.M.: Robust broadband nanopositioning: fundamental trade-offs, analysis, and design in a two-degree-of-freedom control framework. Nanotechnology 20(3), 035501 (2008)

    Google Scholar 

  13. Moheimani, S.O.: A survey of recent innovations in vibration damping and control using shunted piezoelectric transducers. IEEE Trans. Control Syst. Technol. 11(4), 482–494 (2003)

    Google Scholar 

  14. Fanson, J.L., Caughey, T.K.: Positive position feedback control for large space structures. AIAA J. 28(4), 717–724 (1990)

    Google Scholar 

  15. Bhikkaji, B., Ratnam, M., Fleming, A.J.: High-performance control of piezoelectric tube scanners. IEEE Trans. Control Syst. Technol. 15(5), 853–866 (2007)

    Google Scholar 

  16. Pota, H.R., Moheimani, S.O., Smith, M.: Resonant controllers for smart structures. Smart Mater. Struct. 11(1), 1–8 (2002)

    Google Scholar 

  17. Salapaka, S., Sebastian, A., Cleveland, J.P.: High bandwidth nano-positioner: a robust control approach. Rev. Sci. Instrum. 73(9), 3232–3241 (2002)

    Google Scholar 

  18. Wei, W., Li, D., Zuo, M.: Compound active disturbance rejection control for resonance damping and tracking of nanopositioning. In: Proceedings of the 33rd China Control Conference, Nanjing, pp. 5906–5909. IEEE Press (2014)

    Google Scholar 

  19. Fleming, A.J., Aphale, S.S., Moheimani, S.O.: A new method for robust damping and tracking control of scanning probe microscope positioning stages. IEEE Trans. Nanotechnol. 9(4), 438–448 (2010)

    Google Scholar 

  20. Gu, G.Y., Zhu, L.M., Su, C.Y.: Modeling and control of piezo-actuated nanopositioning stages: a survey. IEEE Trans. Autom. Sci. Eng. 13(1), 313–332 (2016)

    Google Scholar 

  21. Wei, W., Xia, P., Zuo, M.: On disturbance rejection of piezo-actuated nanopositioner. In: 7th IEEE Data Driven Control and Learning Systems Conference, Enshi, pp. 688–692. IEEE Press (2018)

    Google Scholar 

  22. Ghafarired, H., Rezaei, S.: Observer-based sliding mode control with adaptive perturbation estimation for microposition actuators. Precis. Eng. 35(2), 271–281 (2011)

    Google Scholar 

  23. Namavar, M., Fleming, A.J., Aleyaasin, M.: An analytical approach to integral resonant control of second-order systems. IEEE/ASME Trans. Mechatron. 19(2), 651–659 (2014)

    Google Scholar 

  24. Narendra, K.S., Lin, Y.H., Valavani, L.S.: Stable adaptive controller design, Part II: Proof of stability. IEEE Trans. Autom. Control 25(3), 440–448 (1980)

    Google Scholar 

  25. Liu, J., Lu, Y.: Adaptive RBF neural network control of robot with actuator nonlinearities. J. Control Theory Appl. 8(2), 249–256 (2010)

    Google Scholar 

  26. Chen, M., Ge, S.S.: Adaptive neural output feedback control of uncertain nonlinear systems with unknown hysteresis using disturbance observer. IEEE Trans. Ind. Electron. 62(12), 7706–7716 (2015)

    Google Scholar 

  27. Ioannou, P.A., Sun, J.: Robust Adaptive Control. PTR Prentice-Hall, Upper Saddle River (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zuo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, W., Xia, P., Liu, Z., Zuo, M. (2019). Robust Adaptive Resonant Damping Control of Nanopositioning. In: Lu, H., Tang, H., Wang, Z. (eds) Advances in Neural Networks – ISNN 2019. ISNN 2019. Lecture Notes in Computer Science(), vol 11555. Springer, Cham. https://doi.org/10.1007/978-3-030-22808-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22808-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22807-1

  • Online ISBN: 978-3-030-22808-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics