Robust Adaptive Resonant Damping Control of Nanopositioning

  • Wei Wei
  • Pengfei Xia
  • Zaiwen Liu
  • Min ZuoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11555)


Hysteresis and vibration are main factors in reducing the accuracy and the speed of a nanopositioner. In order to improve the positioning accuracy and the speed, a robust adaptive resonant damping control is proposed for trajectory tracking of a nanopositioner system driven by a piezoelectric actuator. Radial basis function neural network is employed to approximate unknown nonlinearities in the controller so as to reduce the dependence on model information. Linear and hysteresis model are establish based on nanopositioning stage measured data. The proposed control strategy is verified by simulation using an identified model.


Piezoelectric actuators Robust adaptive Resonant damping Radial basis function Hysteresis 


  1. 1.
    Tuma, T., Sebastian, A., Lygeros, J.: The four pillars of nanopositioning for scanning probe microscopy: the position sensor, the scanning device, the feedback controller, and the reference trajectory. IEEE Control Syst. Mag. 33(6), 68–85 (2013)Google Scholar
  2. 2.
    Li, Y., Xu, Q.: A totally decoupled piezo-driven XYZ flexure parallel micropositioning stage for micro/nan-manipulation. IEEE Trans. Autom. Sci. Eng. 8(2), 265–279 (2011)Google Scholar
  3. 3.
    Wang, F., Liang, C., Tian, Y.: A flexure-based kinematically decoupled micropositioning stage with a centimeter range dedicated to micro/nano manufacturing. IEEE/ASME Trans. Mechatron. 21(2), 1055–1062 (2016)Google Scholar
  4. 4.
    Devasia, S., Eleftheriou, E., Moheimani, S.O.: A survey of control issues in nanopositioning. IEEE Trans. Control Syst. Technol. 15(5), 802–823 (2007)Google Scholar
  5. 5.
    Gu, G.Y., Zhu, L.M., Su, C.Y.: Integral resonant damping for high-bandwidth control of piezoceramic stack actuators with asymmetric hysteresis nonlinearity. Mechatronics 24(4), 367–375 (2014)Google Scholar
  6. 6.
    Ge, P., Jouaneh, M.: Tracking control of a piezoceramic actuator. IEEE Trans. Control Syst. Technol. 4(3), 209–216 (1996)Google Scholar
  7. 7.
    Iyer, R.V., Tan, X.: Control of hysteretic systems through inverse compensation. IEEE Control Syst. 29(1), 83–99 (2009)Google Scholar
  8. 8.
    Jayawardhana, B., Logemann, H., Ryan, E.P.: PID control of second-order systems with hysteresis. Int. J. Control 81(8), 1331–1342 (2008)Google Scholar
  9. 9.
    Liu, W., Cheng, L., Hou, Z.G.: An inversion-free predictive controller for piezoelectric actuators based on a dynamic linearized neural network model. IEEE/ASME Trans. Mechatron. 21(1), 214–226 (2016)Google Scholar
  10. 10.
    Cheng, L., Liu, W., Yang, C.: A neural-network-based controller for piezoelectric-actuated stick-slip devices. IEEE Trans. Ind. Electron. 65(3), 2598–2607 (2018)Google Scholar
  11. 11.
    Clayton, G.M., Tien, S., Leang, K.K.: A review of feedforward control approaches in nanopositioning for high-speed SPM. J. Dyn. Syst. Meas. Control 131(6), 061101 (2009)Google Scholar
  12. 12.
    Lee, C., Salapaka, S.M.: Robust broadband nanopositioning: fundamental trade-offs, analysis, and design in a two-degree-of-freedom control framework. Nanotechnology 20(3), 035501 (2008)Google Scholar
  13. 13.
    Moheimani, S.O.: A survey of recent innovations in vibration damping and control using shunted piezoelectric transducers. IEEE Trans. Control Syst. Technol. 11(4), 482–494 (2003)Google Scholar
  14. 14.
    Fanson, J.L., Caughey, T.K.: Positive position feedback control for large space structures. AIAA J. 28(4), 717–724 (1990)Google Scholar
  15. 15.
    Bhikkaji, B., Ratnam, M., Fleming, A.J.: High-performance control of piezoelectric tube scanners. IEEE Trans. Control Syst. Technol. 15(5), 853–866 (2007)Google Scholar
  16. 16.
    Pota, H.R., Moheimani, S.O., Smith, M.: Resonant controllers for smart structures. Smart Mater. Struct. 11(1), 1–8 (2002)Google Scholar
  17. 17.
    Salapaka, S., Sebastian, A., Cleveland, J.P.: High bandwidth nano-positioner: a robust control approach. Rev. Sci. Instrum. 73(9), 3232–3241 (2002)Google Scholar
  18. 18.
    Wei, W., Li, D., Zuo, M.: Compound active disturbance rejection control for resonance damping and tracking of nanopositioning. In: Proceedings of the 33rd China Control Conference, Nanjing, pp. 5906–5909. IEEE Press (2014)Google Scholar
  19. 19.
    Fleming, A.J., Aphale, S.S., Moheimani, S.O.: A new method for robust damping and tracking control of scanning probe microscope positioning stages. IEEE Trans. Nanotechnol. 9(4), 438–448 (2010)Google Scholar
  20. 20.
    Gu, G.Y., Zhu, L.M., Su, C.Y.: Modeling and control of piezo-actuated nanopositioning stages: a survey. IEEE Trans. Autom. Sci. Eng. 13(1), 313–332 (2016)Google Scholar
  21. 21.
    Wei, W., Xia, P., Zuo, M.: On disturbance rejection of piezo-actuated nanopositioner. In: 7th IEEE Data Driven Control and Learning Systems Conference, Enshi, pp. 688–692. IEEE Press (2018)Google Scholar
  22. 22.
    Ghafarired, H., Rezaei, S.: Observer-based sliding mode control with adaptive perturbation estimation for microposition actuators. Precis. Eng. 35(2), 271–281 (2011)Google Scholar
  23. 23.
    Namavar, M., Fleming, A.J., Aleyaasin, M.: An analytical approach to integral resonant control of second-order systems. IEEE/ASME Trans. Mechatron. 19(2), 651–659 (2014)Google Scholar
  24. 24.
    Narendra, K.S., Lin, Y.H., Valavani, L.S.: Stable adaptive controller design, Part II: Proof of stability. IEEE Trans. Autom. Control 25(3), 440–448 (1980)Google Scholar
  25. 25.
    Liu, J., Lu, Y.: Adaptive RBF neural network control of robot with actuator nonlinearities. J. Control Theory Appl. 8(2), 249–256 (2010)Google Scholar
  26. 26.
    Chen, M., Ge, S.S.: Adaptive neural output feedback control of uncertain nonlinear systems with unknown hysteresis using disturbance observer. IEEE Trans. Ind. Electron. 62(12), 7706–7716 (2015)Google Scholar
  27. 27.
    Ioannou, P.A., Sun, J.: Robust Adaptive Control. PTR Prentice-Hall, Upper Saddle River (1996)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Computer and Information EngineeringBeijing Technology and Business UniversityBeijingChina

Personalised recommendations