Advertisement

A Novel Second-Order Consensus Control in Multi-agent Dynamical Systems

  • Boshan Chen
  • Jiejie ChenEmail author
  • Zhigang Zeng
  • Ping Jiang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11555)

Abstract

In this paper, a new type protocol is proposed. Second-order consensus in multi-agent dynamical systems with this protocol is studied using a new analytical method. A necessary and sufficient condition for reaching consensus of the system with the this protocol is obtained, which depending on the spectrum of the Laplacian matrix and the control parameter setting. Meanwhile, a simple and practical criterion of sampling period is given in the ordinary case. Finally, two simulation examples are given to verify and illustrate the theoretical analysis.

Keywords

Second-order consensus Multi-agent systems Sampling period 

Notes

Acknowledgements

The work is supported by the Natural Science Foundation of China under Grant 61603129, 61841301, the Natural Science Foundation of Hubei Province under Grant 2016CFC734.

References

  1. 1.
    DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69(345), 118–121 (1974)Google Scholar
  2. 2.
    McLain, T., Chandler, P., Rasmussen, S., Pachter, M.: Cooperative control of UAV rendezvous. In: American Control Conference, pp. 2309–2314. IEEE (2001)Google Scholar
  3. 3.
    Lin, Z., Francis, B., Maggiore, M.: Necessary and sufficient graphical conditions for formation control of unicycles. Trans. Autom. Control 50(1), 121–127 (2005)Google Scholar
  4. 4.
    Fax, J., Murray, R.: Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 49(9), 1465–1476 (2004)Google Scholar
  5. 5.
    Cortés, J., Bullo, F.: Coordination and geometric optimization via distributed dynamical systems. SIAM J. Control Optim. 44(5), 1543–1574 (2006)Google Scholar
  6. 6.
    Wu, C.W., Chua, L.O.: On a conjecture regarding the synchronization in an array of linearly coupled dynamical systems. IEEE Trans. Circuits Syst. I Regular Paper 43(2), 161–165 (1996)Google Scholar
  7. 7.
    Leblanc, H.J., Koutsoukos, X.: Resilient first-order consensus and weakly stable, higher order synchronization of continuous-time networked multi-agent systems. IEEE Trans. Control Netw. Syst. 5(3), 1219–1231 (2017)Google Scholar
  8. 8.
    Ge, X., Han, Q., Ding, D., Zhang, X., Ning, B.: A survey on recent advances in distributed sampled-data cooperative control of multi-agent systems. Neurocomputing 275, 1684–1701 (2018)Google Scholar
  9. 9.
    Li, H., Zhu, Y., Wang, J.: Consensus of nonlinear second-order multi-agent systems with mixed time-delays and intermittent communications. Neurocomputing 251(16), 115–126 (2017)Google Scholar
  10. 10.
    Zheng, Y., Ma, J., Wang, L.: Consensus of hybrid multi-agent systems. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 1359–1365 (2018)Google Scholar
  11. 11.
    Liu, X., Zhang, K., Xie, W.C.: Consensus of multi-agent systems via hybrid impulsive protocols with time-delay. Nonlinear Anal. Hybrid Syst. 30, 134–146 (2018)Google Scholar
  12. 12.
    Hou, W., Fu, M., Zhang, H.: Consensus conditions for general second-order multi-agent systems with communication delay. Automatic 75, 293–298 (2017)Google Scholar
  13. 13.
    Hu, J., Cao, J., Yu, J.: Consensus of nonlinear multi-agent systems with observer-based protocols. Syst. Control Lett. 72, 71–79 (2014)Google Scholar
  14. 14.
    He, W., Chen, G., Han, Q.L.: Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control. Inf. Sci. 380, 145–158 (2017)Google Scholar
  15. 15.
    Liu, X., Zhang, K., Xie, W.C.: Consensus seeking in multi-agent systems via hybrid protocols with: impulse delays. Nonlinear Anal. Hybrid Syst. 25, 90–98 (2017)Google Scholar
  16. 16.
    Liu, H., Xie, G., Yu, M.: Necessary and sufficient conditions for containment control of fractional-order multi-agent systems. Neurocomputing 323, 86–95 (2019)Google Scholar
  17. 17.
    Yu, Z., Jiang, H., Hu, C., Yu, J.: Necessary and sufficient conditions for consensus of fractional-order multiagent systems via sampled-data control. IEEE Trans. Syst. Man Cybern. 47(8), 1892–1901 (2017)Google Scholar
  18. 18.
    Wang, F., Yang, Y.: Leader-following consensus of nonlinear fractional-order multi-agent systems via event-triggered control. Int. J. Syst. Sci. 48(3), 571–577 (2017)Google Scholar
  19. 19.
    Ma, X., Sun, F., Li, H., He, B.: The consensus region design and analysis of fractional-order multi-agent systems. Int. J. Syst. Sci. 48(3), 629–636 (2017)Google Scholar
  20. 20.
    Zhu, W., Li, W., Zhou, P., Yang, C.: Consensus of fractional-order multi-agent systems with linear models via observer-type protocol. Neurocomputing 230(3), 60–65 (2017)Google Scholar
  21. 21.
    Chen, Y., Wen, G., Peng, Z., Rahmani, A.: Consensus of fractional-order multiagent system via sampled-data event-triggered control. J. Franklin Inst. (2018).  https://doi.org/10.1016/j.jfranklin.01.043Google Scholar
  22. 22.
    Song, Q., Cao, J., Yu, W.: Second-order leader-following consensus for nonlinear multi-agent systems via pinning control. Syst. Control Lett. 59(9), 553–562 (2010)Google Scholar
  23. 23.
    Song, Q., Liu, F., Cao, J., Yu, W.: M-matrix strategies for pinning-controlled leader-following consensus in multiagent systems with nonlinear dynamics. IEEE Trans. Cybern. 43(6), 1688–1697 (2013)Google Scholar
  24. 24.
    Wen, G., Duan, Z., Yu, W., Chen, G.: Consensus in multi-agent systems with communication constraints. Int. J. Robust Nonlinear Control 22(2), 170–182 (2012)Google Scholar
  25. 25.
    You, K., Li, Z., Xie, L.: Consensus condition for linear multi-agent systems over randomly switching topologies. Automatica 49(10), 3125–3132 (2013)Google Scholar
  26. 26.
    Liu, H., Cheng, L., Tan, M., Hou, Z.G.: Containment control of continuous-time linear multi-agent systems with aperiodic sampling. Automatica 57, 78–84 (2015)Google Scholar
  27. 27.
    Li, Z., Wei, R., Liu, X.: Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders. Int. J. Robust Nonlinear Control 23(5), 534–547 (2013)Google Scholar
  28. 28.
    Qin, J., Gao, H.: A sufficient condition for convergence of sampled-data consensus for double-integrator dynamics with nonuniform and time-varying communication delays. IEEE Trans. Autom. Control 57(9), 2417–2422 (2012)Google Scholar
  29. 29.
    Wu, Y., Su, H., Shi, P., Shu, Z., Wu, Z.G.: Consensus of multiagent systems using aperiodic sampled-data control. IEEE Trans. Cybern. 46(9), 2132–2143 (2016)Google Scholar
  30. 30.
    Yu, W., Chen, G., Cao, M.: Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems. Automatica 46(6), 1089–1095 (2010)Google Scholar
  31. 31.
    Cao, Y., Ren, W.: Multi-vehicle coordination for double-integrator dynamics under fixed undirected/directed interaction in a sampled-data setting. Int. J. Robust Nonlinear Control 20(9), 987–1000 (2010)Google Scholar
  32. 32.
    Gao, Y., Wang, L., Xie, G., Wu, B.: Consensus of multi-agent systems based on sampled-data control. Int. J. Robust Nonlinear Control 82(12), 2193–2205 (2009)Google Scholar
  33. 33.
    Liu, H., Xie, G., Wang, L.: Necessary and sufficient conditions for solving consensus problems of double-integrator dynamics via sampled control. Int. J. Robust Nonlinear Control 20(15), 1706–1722 (2010)Google Scholar
  34. 34.
    Ma, Q., Xu, S., Lewis, F.: Second-order consensus for directed multiagent systems with sampled data. Int. J. Robust Nonlinear Control 24(16), 2560–2573 (2014)Google Scholar
  35. 35.
    Gao, Y., Wang, L.: Sampled-data based consensus of continuous time multiagent systems with time-varying topology. IEEE Trans. Autom. Control 56(5), 1226–1231 (2011)Google Scholar
  36. 36.
    Yu, W., Zhou, L., Yu, X., Lü, J., Lu, R.: Consensus in multi-agent systems with second-order dynamics and sampled data. IEEE Trans. Ind. Inform. 9(4), 2137–2146 (2013)Google Scholar
  37. 37.
    Yu, W., Zheng, W.X., Chen, G., Ren, W., Cao, J.: Second-order consensus in multi-agent dynamical systems with sampled position data. Automatica 47(7), 1496–1503 (2011)Google Scholar
  38. 38.
    Yu, W., Chen, G., Cao, M., Ren, W.: Delay-induced consensus and quasiconsensus in multi-agent dynamical systems. IEEE Trans. Circuits Syst. I Regular Paper 60(10), 679–2687 (2013)Google Scholar
  39. 39.
    Huang, N., Duan, Z., Chen, G.: Some necessary and sufficient conditions for consensus of second-order multi-agent systems with sampled position data. Automatica 63, 148–155 (2016)Google Scholar
  40. 40.
    Liu, H., Xie, G., Wang, L.: Necessary and sufficient conditions for containment control of networked multi-agent systems. Automatica 48(7), 1415–1422 (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Boshan Chen
    • 1
  • Jiejie Chen
    • 2
    Email author
  • Zhigang Zeng
    • 3
  • Ping Jiang
    • 4
  1. 1.College of Mathematics and StatisticsHubei Normal UniversityHuangshiChina
  2. 2.College of Computer Science and TechnnologyHubei Normal UniversityHuangshiChina
  3. 3.School of Artificial Intelligence and AutomationHuazhong University of Science and TechnologyWuhanChina
  4. 4.Computer SchoolHubei Polytechnic UniversityHuangshiChina

Personalised recommendations