Skip to main content

MaxEntropy Pursuit Variational Inference

  • Conference paper
  • First Online:
Advances in Neural Networks – ISNN 2019 (ISNN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11554))

Included in the following conference series:

  • 2055 Accesses

Abstract

One of the core problems in variational inference is a choice of approximate posterior distribution. It is crucial to trade-off between efficient inference with simple families as mean-field models and accuracy of inference. We propose a variant of a greedy approximation of the posterior distribution with tractable base learners. Using Max-Entropy approach, we obtain a well-defined optimization problem. We demonstrate the ability of the method to capture complex multimodal posterior via continual learning setting for neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burda, Y., Grosse, R., Salakhutdinov, R.: Importance weighted autoencoders. arXiv preprint arXiv:1509.00519 (2015)

  2. Burnaev, E., Panin, I.: Adaptive design of experiments for Sobol indices estimation based on quadratic metamodel. In: Gammerman, A., Vovk, V., Papadopoulos, H. (eds.) SLDS 2015. LNCS (LNAI), vol. 9047, pp. 86–95. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17091-6_4

    Google Scholar 

  3. Burnaev, E., Panin, I., Sudret, B.: Effective design for Sobol indices estimation based on polynomial chaos expansions. In: Gammerman, A., Luo, Z., Vega, J., Vovk, V. (eds.) COPA 2016. LNCS (LNAI), vol. 9653, pp. 165–184. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33395-3_12

    Google Scholar 

  4. Burnaev, E., Panin, I., Sudret, B.: Efficient design of experiments for sensitivity analysis based on polynomial chaos expansions. Ann. Math. Artif. Intell. 81(1), 187–207 (2017)

    Google Scholar 

  5. Burnaev, E., Zaytsev, A., Spokoiny, V.: Properties of the posterior distribution of a regression model based on Gaussian random fields. Autom. Remote Control 74(10), 1645–1655 (2013)

    Google Scholar 

  6. Burnaev, E., Zaytsev, A., Spokoiny, V.: The Bernstein-von Mises theorem for regression based on Gaussian processes. Russ. Math. Surv. 68(5), 954–956 (2013)

    Google Scholar 

  7. Burnaev, E., Zaytsev, A., Spokoiny, V.: Properties of the Bayesian parameter estimation of a regression based on Gaussian processes. J. Math. Sci. 203(6), 789–798 (2014)

    Google Scholar 

  8. Caticha, A.: Relative entropy and inductive inference. In: AIP Conference Proceedings, vol. 707, pp. 75–96 (2004)

    Google Scholar 

  9. Cremer, C., Li, X., Duvenaud, D.: Inference suboptimality in variational autoencoders. In: International Conference on Machine Learning, pp. 1086–1094 (2018)

    Google Scholar 

  10. Duvenaud, D., Adams, R.P.: Black-box stochastic variational inference in five lines of python. In: NIPS Workshop on Black-box Learning and Inference (2015)

    Google Scholar 

  11. Guo, F., Wang, X., Fan, K., Broderick, T., Dunson, D.B.: Boosting variational inference. arXiv preprint arXiv:1611.05559 (2016)

  12. Hoffman, M.D., Blei, D.M., Wang, C., Paisley, J.: Stochastic variational inference. J. Mach. Learn. Res. 14(1), 1303–1347 (2013)

    Google Scholar 

  13. Kemker, R., McClure, M., Abitino, A., Hayes, T.L., Kanan, C.: Measuring catastrophic forgetting in neural networks. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  14. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  15. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Google Scholar 

  16. Li, Y., Turner, R.E.: Rényi divergence variational inference. In: Advances in Neural Information Processing Systems, pp. 1073–1081 (2016)

    Google Scholar 

  17. Locatello, F., Khanna, R., Ghosh, J., Ratsch, G.: Boosting variational inference: an optimization perspective. In: International Conference on Artificial Intelligence and Statistics, pp. 464–472 (2018)

    Google Scholar 

  18. Miller, A.C., Foti, N.J., Adams, R.P.: Variational boosting: iteratively refining posterior approximations. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 2420–2429. JMLR. org (2017)

    Google Scholar 

  19. Minka, T., et al.: Divergence measures and message passing. Technical report, Microsoft Research (2005)

    Google Scholar 

  20. Ranganath, R., Gerrish, S., Blei, D.: Black box variational inference. In: Artificial Intelligence and Statistics, pp. 814–822 (2014)

    Google Scholar 

  21. Ranganath, R., Tran, D., Blei, D.: Hierarchical variational models. In: International Conference on Machine Learning, pp. 324–333 (2016)

    Google Scholar 

  22. Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In: International Conference on Machine Learning, pp. 1530–1538 (2015)

    Google Scholar 

  23. Salimans, T., Kingma, D.P., Welling, M., et al.: Markov chain Monte Carlo and variational inference: bridging the gap. In: ICML, vol. 37, pp. 1218–1226 (2015)

    Google Scholar 

  24. Titsias, M., Lázaro-Gredilla, M.: Doubly stochastic variational Bayes for non-conjugate inference. In: International Conference on Machine Learning, pp. 1971–1979 (2014)

    Google Scholar 

  25. Tran, D., Ranganath, R., Blei, D.M.: The variational Gaussian process. arXiv preprint arXiv:1511.06499 (2015)

  26. Wang, C., Wang, Y., Schapire, R., et al.: Functional Frank-Wolfe boosting for general loss functions. arXiv preprint arXiv:1510.02558 (2015)

  27. Wang, D., Liu, H., Liu, Q.: Variational inference with tail-adaptive f-divergence. In: Advances in Neural Information Processing Systems, pp. 5742–5752 (2018)

    Google Scholar 

  28. Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient Langevin dynamics. In: Proceedings of the 28th International Conference on Machine Learning, ICML 2011, pp. 681–688 (2011)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation under Grant 19-41-04109.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Burnaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Egorov, E., Neklydov, K., Kostoev, R., Burnaev, E. (2019). MaxEntropy Pursuit Variational Inference. In: Lu, H., Tang, H., Wang, Z. (eds) Advances in Neural Networks – ISNN 2019. ISNN 2019. Lecture Notes in Computer Science(), vol 11554. Springer, Cham. https://doi.org/10.1007/978-3-030-22796-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22796-8_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22795-1

  • Online ISBN: 978-3-030-22796-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics