A Learning-Based Approach for Perceptual Models of Preference

  • Junhui Mei
  • Xinyi LeEmail author
  • Xiaoting Zhang
  • Charlie C. L. Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11554)


This paper introduces a novel data-driven approach based on subjective constraints and feature learning for training perceptual models of preference. Fuzzy evaluation is applied to describe the subjective opinions from a large set of data collected from user study. Combined with the objective attributes of the training models and the subjective preferences, an optimization method is developed successfully for training and learning perceptual models. Two applications are given in details for the selection of “best” viewpoint of 3D objects and the optimized direction of 3D printing, which verify the effectiveness of our approach. This work also demonstrate a good human-computer interaction practice that draws supporting knowledge from both the machine side and the human side.


Perceptual model Feature learning Viewpoint selection 3D printing direction 


  1. 1.
    Acampora, G., Cadenas, J.M., Loia, V., Ballester, E.M.: A multi-agent memetic system for human-based knowledge selection. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 41(5), 946–960 (2011)CrossRefGoogle Scholar
  2. 2.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  3. 3.
    Chakraborty, S., Konar, A., Jain, L.C.: An efficient algorithm to computing max;min inverse fuzzy relation for abductive reasoning. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 40(1), 158–169 (2010)CrossRefGoogle Scholar
  4. 4.
    Chen, S.M., Tsai, B.H.: Autocratic decision making using group recommendations based on intervals of linguistic terms and likelihood-based comparison relations. IEEE Trans. Syst. Man Cybern. Syst. 45(2), 250–259 (2015)CrossRefGoogle Scholar
  5. 5.
    Chou, T.Y., Liang, G.S.: Application of a fuzzy multi-criteria decision-making model for shipping company performance evaluation. Marit. Policy Manag. 28(4), 375–392 (2001)CrossRefGoogle Scholar
  6. 6.
    Chua, C.K., Leong, K.F.: Rapid Prototyping: Principles and Applications, vol. 1. World Scientific, Singapore (2003)CrossRefGoogle Scholar
  7. 7.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)zbMATHGoogle Scholar
  8. 8.
    Güngör, Z., Serhadlıoğlu, G., Kesen, S.E.: A fuzzy AHP approach to personnel selection problem. Appl. Soft Comput. 9(2), 641–646 (2009)CrossRefGoogle Scholar
  9. 9.
    Gören, S., Baccouche, A., Pierreval, H.: A framework to incorporate decision-maker preferences into simulation optimization to support collaborative design. IEEE Trans. Syst. Man Cybern. Syst. 47(2), 229–237 (2016)Google Scholar
  10. 10.
    Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)CrossRefGoogle Scholar
  11. 11.
    Ishibuchi, H., Nakashima, T., Murata, T.: Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 29(5), 601–618 (1999)CrossRefGoogle Scholar
  12. 12.
    Jaeger, H.: Echo state network. Scholarpedia 2(9), 2330 (2007)CrossRefGoogle Scholar
  13. 13.
    Klir, G., Yuan, B.: Fuzzy sets and fuzzy logic, theory and applications (2008)Google Scholar
  14. 14.
    Klir, G.J., Yuan, B.: Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems. World Scientific, Singapore (1996)zbMATHGoogle Scholar
  15. 15.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  16. 16.
    Liu, H., Yu, L., Wang, W., Sun, F.: Extreme learning machine for time sequence classification. Neurocomputing 174, 322–330 (2016)CrossRefGoogle Scholar
  17. 17.
    Michalski, R.S., Carbonell, J.G., Mitchell, T.M.: Machine Learning: An Artificial Intelligence Approach. Springer, Heidelberg (2013)zbMATHGoogle Scholar
  18. 18.
    Mikhailov, L.: Deriving priorities from fuzzy pairwise comparison judgements. Fuzzy Sets Syst. 134(3), 365–385 (2003)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Salakhutdinov, R., Hinton, G.E.: Deep Boltzmann machines. In: AISTATS, vol. 1, p. 3 (2009)Google Scholar
  20. 20.
    Secord, A., Lu, J., Finkelstein, A., Singh, M., Nealen, A.: Perceptual models of viewpoint preference. ACM Trans. Graph. (TOG) 30(5), 109 (2011)CrossRefGoogle Scholar
  21. 21.
    Shi, L.C., Lu, B.L.: EEG-based vigilance estimation using extreme learning machines. Neurocomputing 102, 135–143 (2013)CrossRefGoogle Scholar
  22. 22.
    Tang, J., Deng, C., Huang, G.B.: Extreme learning machine for multilayer perceptron. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 809–821 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Vanek, J., Galicia, J.A.G., Benes, B.: Clever support: efficient support structure generation for digital fabrication. Comput. Graph. Forum 33(5), 117–125 (2014)CrossRefGoogle Scholar
  24. 24.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (2013)zbMATHGoogle Scholar
  25. 25.
    Wang, C.C., Chang, T.K., Yuen, M.M.: From laser-scanned data to feature human model: a system based on fuzzy logic concept. Comput.-Aided Des. 35(3), 241–253 (2003)CrossRefGoogle Scholar
  26. 26.
    Wang, C.C., Leung, Y.S., Chen, Y.: Solid modeling of polyhedral objects by layered depth-normal images on the GPU. Comput.-Aided Des. 42(6), 535–544 (2010)CrossRefGoogle Scholar
  27. 27.
    Wang, Y., Xie, Z., Xu, K., Dou, Y., Lei, Y.: An efficient and effective convolutional auto-encoder extreme learning machine network for 3D feature learning. Neurocomputing 174, 988–998 (2016)CrossRefGoogle Scholar
  28. 28.
    Wu, Q., Wang, Z., Deng, F., Chi, Z., Feng, D.D.: Realistic human action recognition with multimodal feature selection and fusion. IEEE Trans. Syst. Man Cybern. Syst. 43(4), 875–885 (2013)CrossRefGoogle Scholar
  29. 29.
    Xie, Z., Xu, K., Liu, L., Xiong, Y.: 3D shape segmentation and labeling via extreme learning machine. In: Computer Graphics Forum, vol. 33, pp. 85–95. Wiley (2014)Google Scholar
  30. 30.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefGoogle Scholar
  31. 31.
    Zhang, X., Le, X., Panotopoulou, A., Whiting, E., Wang, C.C.: Perceptual models of preference in 3D printing direction. ACM Trans. Graph. (TOG) 34(6), 215 (2015)CrossRefGoogle Scholar
  32. 32.
    Zhang, X., Le, X., Wu, Z., Whiting, E., Wang, C.C.: Data-driven bending elasticity design by shell thickness. In: Computer Graphics Forum, vol. 35, pp. 157–166 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Junhui Mei
    • 1
  • Xinyi Le
    • 1
    Email author
  • Xiaoting Zhang
    • 2
  • Charlie C. L. Wang
    • 3
  1. 1.Shanghai Jiao Tong UniversityShanghaiChina
  2. 2.Boston UniversityBostonUSA
  3. 3.The Chinese University of Hong KongShatinHong Kong

Personalised recommendations