Broad Learning for Optimal Short-Term Traffic Flow Prediction

  • Di Liu
  • Wenwu YuEmail author
  • Simone Baldi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11554)


In this work, we explore the use of a Broad Learning System (BLS) as a way to replace deep learning architectures for traffic flow prediction. BLS is shown to not only outperforms standard learning algorithms (Least absolute shrinkage and selection operator (LASSO), shallow and deep neural networks, stacked autoencoders) in terms of training time, but also in terms of testing accuracy.


Broad Learning System Traffic flow prediction Flat network Fast least-square methods 


  1. 1.
    Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Applications. Wiley, New York (1974)Google Scholar
  2. 2.
    Chan, K.Y., Dillon, T.S., Singh, J., Chang, E.: Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and levenberg–marquardt algorithm. IEEE Trans. Intell. Transp. Syst. 13(2), 644–654 (2012)Google Scholar
  3. 3.
    Chen, C.L.P., Zhang, C.Y., Chen, L., Gan, M.: Fuzzy restricted boltzmann machine for the enhancement of deep learning. IEEE Trans. Fuzzy Syst. 23(6), 2163–2173 (2015)Google Scholar
  4. 4.
    Chen, C.P., Liu, Z.L.: Broad learning system: an effective and efficient incremental learning system without the need for deep architecture. IEEE Trans. Neural Netw. Learn. Syst. 29(1), 10–24 (2018)Google Scholar
  5. 5.
    Chen, C.P., Wan, J.Z.: A rapid learning and dynamic stepwise updating algorithm for flat neural networks and the application to time-series prediction. IEEE Trans. Syst. Man Cybern. Part B Cybern. 29(1), 62–72 (1999)Google Scholar
  6. 6.
    Chen, M., Yu, X., Liu, Y.: PCNN: deep convolutional networks for short-term traffic congestion prediction. IEEE Trans. Intell. Transp. Syst. 19(11), 1–10 (2018)Google Scholar
  7. 7.
    Ghofrani, F., Jamshidi, A., Keshavarz-Haddad, A.: Internet traffic classification using hidden naive Bayes model. In: Electrical Engineering, Tehran, pp. 235–240. IEEE Press (2015)Google Scholar
  8. 8.
    Gong, M., Liu, J., Li, H., Cai, Q., Su, L.: A multiobjective sparse feature learning model for deep neural networks. IEEE Trans. Neural Netw. Learn. Syst. 26(12), 3263–3277 (2017)Google Scholar
  9. 9.
    Hoerl, A., Kennard, R.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (2000)Google Scholar
  10. 10.
    Huang, W., Song, G., Hong, H., Xie, K.: Deep architecture for traffic flow prediction: deep belief networks with multitask learning. IEEE Trans. Intell. Transp. Syst. 15(5), 2191–2201 (2014)Google Scholar
  11. 11.
    Igelnik, B., Pao, Y.H.: Stochastic choice of basis functions in adaptive function approximation and the functional-link net. IEEE Trans. Neural Netw. 6(6), 1320–1329 (1995)Google Scholar
  12. 12.
    Koesdwiady, A., Soua, R., Karray, F.: Improving traffic flow prediction with weather information in connected cars: a deep learning approach. IEEE Trans. Veh. Technol. 65(12), 9508–9517 (2016)Google Scholar
  13. 13.
    Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.Y.: Traffic flow prediction with big data: a deep learning approach. IEEE Trans. Intell. Transp. Syst. 16(2), 865–873 (2015)Google Scholar
  14. 14.
    Pao, Y.H., Takefuji, Y.: Functional-link net computing: theory, system architecture, and functionalities. Computer 25(5), 76–79 (1992)Google Scholar
  15. 15.
    Polson, N.G., Sokolov, V.O.: Deep learning for short-term traffic flow prediction. Transp. Res. Part C Emerg. Technol. 79, 1–17 (2017)Google Scholar
  16. 16.
    Tang, J., Deng, C., Huang, G.B.: Extreme learning machine for multilayer perceptron. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 809–821 (2017)Google Scholar
  17. 17.
    Wu, Y., Tan, H., Qin, L., Ran, B., Jiang, Z.: A hybrid deep learning based traffic flow prediction method and its understanding. Transp. Res. Part C 90(1), 166–180 (2018)Google Scholar
  18. 18.
    Xu, M., Han, M., Chen, C.L.P., Qiu, T.: Recurrent broad learning systems for time series prediction. IEEE Trans. Cybern. (2018).
  19. 19.
    Yang, H.F., Dillon, T.S., Chen, Y.P.: Optimized structure of the traffic flow forecasting model with a deep learning approach. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2371–2381 (2016)Google Scholar
  20. 20.
    Yi, H., Jung, H.J., Bae, S.: Deep neural networks for traffic flow prediction. In: IEEE International Conference on Big Data & Smart Computing, Jeju, pp. 328–331. IEEE Press (2017)Google Scholar
  21. 21.
    Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical world. In: ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 316–324 (2011)Google Scholar
  22. 22.
    Zhan, H., Gomes, G., Li, X.S., Madduri, K., Wu, K.: Consensus ensemble system for traffic flow prediction. IEEE Trans. Intell. Transp. Syst. 19(12), 3903–3914 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Cyber Science and EngineeringSoutheast UniversityNanjingChina
  2. 2.School of MathematicsSoutheast UniversityNanjingChina
  3. 3.Delft Center for Systems and ControlDelft University of TechnologyDelftThe Netherlands

Personalised recommendations